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Abstract. An identity involving binomial coefficients that appeared in the
evaluation of a definite integral is established by a variety of methods.

1. Introduction

The evaluation of finite sums involving binomial coefficients appears throughout
the undergraduate curriculum. Students are often exposed to identities such as

(1.1)
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Elementary proofs abound: the first identity results from choosing x = y = 1 in
the binomial expansion of (x+y)n. The second one may be obtained by comparing
the coefficient of xn in the identity (1 + x)n(1 + x)n = (1 + x)2n. The reader is
surely aware of many other proofs, including some combinatorial in nature.

At the end of the previous century, the evaluation of these sums was trivialized
by the work of H. Wilf and D. Zeilberger [8]. In the preface to the charming book
[8], the authors begin with the phrase

You’ve been up all night working on your new theory, you found the

answer, and it is in the form that involves factorials, binomial

coefficients, and so on, ...

and then proceed to introduce the method of creative telescoping discussed in Sec-
tion 3. This technique provides an automatic tool for the verification of these type
of identities. The points of view presented in [3] and [10] provide an entertaining
comparison of what is admissible as a proof.

In this short note we present a variety of proofs of the identity

(1.2)

m
∑

k=0

2−2k

(

2k

k

)(

2m − k

m

)

=

m
∑

k=0

2−2k

(

2k

k

)(

2m + 1

2k

)

.

2. The origin

The formula (1.2) comes from an unexpected source. Several evaluations of

(2.1) N0,4(a; m) :=

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
,
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for a > −1 and m ∈ N, in the form

(2.2) N0,4(a; m) =
π

2m+3/2 (a + 1)m+1/2
Pm(a),

are given in [1]. Here Pm(a) is a polynomial in a. The first expression obtained for
Pm(a) in [6], via elementary methods, is

Pm(a) =

m
∑

j=0

(

2m + 1

2j

)

(a + 1)j

m−j
∑

k=0

(
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k

)(
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m − k

)

2−3(m−k)(a − 1)m−k−j .

The reader will find the details in [5], page 140. The alternative expression

(2.3) Pm(a) = 2−2m
m

∑

k=0

2k

(

2m − 2k
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)(

m + k

m

)

(a + 1)k

appeared first in [4]. The complexity of these expressions lead the authors to
evaluate it at a = 1. This produced (1.2).

3. A proof using the WZ method

An efficient procedure to prove the identity an = bn is to produce a recurrence
satisfied by both sequences and matching the required initial conditions. For ex-
ample, to prove

(3.1)

n
∑

k=0

(

n

k

)

= 2n,

it suffices to check that both sides satisfy xn = 2xn−1 and they share the initial
condition x0 = 1. The real question is how to produce the recurrence. In this case,
it is easier to look for a recurrence for the summand

(

n
k

)

and then sum over k. The
basic identity

(3.2)

(
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k

)

=

(
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)

+

(
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k − 1

)

,

after summing over all values of k yields the desired recurrence. The result now
follows from checking initial values.

H. Wilf and D. Zeilberger [7, 8, 9] came up with a breakthrough in producing
an algorithm that provides the recurrence for the summand tn,k in sn =

∑

k tn,k.
The method applies to terms tn,k of hypergeometric type; that is tn+1,k/tn,k and
tn,k+1/tn,k are rational functions of the indices. This so-called WZ-method has
been implemented in modern symbolic languages. For instance, Maple shows that
both sides of (1.2) satisfy the recurrence

(3.3) (2m + 3)(2m + 2)f(m + 1) = (4m + 5)(4m + 3)f(m).

The identity (1.2) now follows from the fact that both sides reduce to 1 at m = 0.
Furthermore, iterating (3.3) yields

(3.4) f(m) = 2−2m

(

4m + 1

2m

)

.
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4. A constant term approach

The second identity in (1.1) arises from matching the coefficient of xn in the
trivial identity (1 + x)n (1 + x)n = (1 + x)2n. The proof of (1.2) presented in this
section is based on producing (Laurent) polynomials whose constant terms give the
two sides, respectively.

The presence of the binomial coefficient
(

2m+1
2k

)

in (1.2) suggests to consider

(
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t + t−1

2

)2m+1

=
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r=0

2−r
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)

(t + t−1)r(4.1)

=
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r
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r
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k

)

tkt−(r−k).

Its constant term is

(4.2)

m
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k=0
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(
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k

)(

2m + 1

2k

)

,

which is the right hand side of (1.2). From

(4.3)

(

1 +
t + t−1

2

)2m+1

=
(t + 1)4m+2

(2t)2m+1

this constant term evaluates to 2−(2m+1)
(

4m+2
2m+1

)

.

The left hand side comes from the constant term in the identity (1 + t)−1/2 ×
(1 + t)−m−1 = (1 + t)−m−1/2. In this product, employ the expansions

(4.4) (1 + t)−1/2 =

∞
∑

k=0

2−2k

(

2k

k

)

(−t)k and (1 + t)−m−1 =

∞
∑

k=0

(

m + k

k

)

(−t)k

to compute the coefficient of tm of the product. Observe that only terms up to
order m contribute to this computation. Thus,

(4.5)

m
∑

k=0

(

2m − k

m

)

(−t)m−k =

m
∑

k=0

(

2m − k

m − k

)

(−t)k

shows that the constant term of t−m(1 + t)−m−1(1 + t)−1/2 is the left hand side of
(1.2). That is,

(4.6) (−1)m

(−m − 3
2

m

)

=
1

22m+1

(

4m + 2

2m + 1

)

giving the result.

5. An excursion into the hypergeometric world

A natural setting of binomial sums such as (1.2) is in the context of hypergeo-
metric functions. These are functions defined by a power series

∑∞
n=0 anxn where

the ratio an+1/an is a rational function of the index n. A classical example is given
by

(5.1) 2F1

(

a b
c

; x

)

:=

∞
∑

k=0

(a)k(b)k

(c)k

xk

k!
.
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Here (a)k = a(a + 1)(a + 2) . . . (a + k − 1) is the ascending factorial. Observe that
the function 2F1 is symmetric in a and b. Moreover, if a is a negative integer, the
sum is finite and the function reduces to a polynomial.

Proposition 5.1. The identity (1.2) is equivalent to

(5.2) 2F1

(

− 1
2 − m −m

1
; 1

)

=

(

2m

m

)

2F1

(

1
2 −m

−2m
; 1

)

.

Proof. The relations
(

1
2

)

k
= 2−2k(2k)!/k! and

(5.3) (−r)k =

{

(−1)kr!
(r−k)! for 0 ≤ k ≤ r

0 otherwise

show that the right hand side of (1.2) and (5.2) agree. Similarly, the relation

(5.4)
(

− 1
2 − m

)

k
=

(−1)k(2m + 1)! (m − k)!

22k (2m − 2k + 1)! m!

shows that both left hand sides also agree. �

The hypergeometric terms in (5.2) can be evaluated using a classical formula of
Gauss [2]:

(5.5) 2F1

(

a b
c

; 1

)

=
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)

and the specialization

(5.6) 2F1

(

−n b
c

; 1

)

=
(c − b)n

(c)n
.

The identity

(5.7) (−x)n = (−1)n(x − n + 1)n

completes the argument.

6. A contour integration approach

Complex analytic techniques are useful in establishing identities involving bino-
mial coefficients. The representation

(6.1)

(

m

n

)

=
1

2πi

∫

|z|=r

(1 + z)m

zn+1
dz

for r > 0 provides the relevant connection. This will now be employed to produce
a proof of (1.2).

The left hand side becomes, for an appropiate choice of radii r1 and r2,
∞
∑

k=0

2−2k

(

2k

k

)(

2m + 1

2k

)

=
1

(2πi)2

∑

k≥0

2−2k

∫

|z|=r1

(1 + z)2k

zk+1
dz

∫

|w|=r2

(1 + w)2m+1

w2k+1
dw

=
1

(2πi)2

∫

|z|=r1

∫

|w|=r2

(1 + w)2m+1

zw

∞
∑

k=0

[

(1 + z)2

4zw2

]k

dw dz

=
1

(2πi)2

∫

|z|=r1

∫

|w|=r2

4w(1 + w)2m+1

4zw2 − (1 + z)2
dw dz.
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The choice of r2 = 1 and Cauchy’s residue theorem imply

(6.2)
1

2πi

∫

|w|=1

(1 + w)2m+1

z(w − (1 + z)/2z1/2)
dw =

(1 + z1/2)4m+2

22m+1z
2m+3

2

.

Then take r1 = 5 to obtain

(6.3)
1

2πi

∫

|z|=5

(1 + z1/2)4m+2

22m+1z(2m+3)/2
dz = 2−2m

(

4m + 1

2m

)

,

the value of the right hand side of (1.2).
The left hand side of (1.2) is

∑

k≥0

2−2k

(

2k

k

)(

2m − k

m − k

)

=
1

(2πi)2

∑

k≥0

2−2k

∫

|z|=
1
2

(1 + z)2k

zk+1
dz

∫

|w|=
1
5

(1 + w)2m−k

wm−k+1
dw

=
1

(2πi)2

∫

|w|=
1
5

(1 + w)2m

wm+1

∫

|z|=
1
2

1

z

∑

k≥0

(

w(1 + z)2

4z(1 + w)

)k

dz dw

=
1

(2πi)2

∫

|w|=
1
5

(1 + w)2m+1

wm+1

∫

|z|=
1
2

4 dz

4z(1 + w) − w(1 + z)2
dw.

The only pole of the integrand, inside the contour, is z = 1
w (2 + w − 2

√
1 + w).

Thus

(6.4)

∫

|z|=
1
2

4 dz

−wz2 + (4 + 2w)z − w
=

1√
1 + w

.

This shows that the right hand side is

(6.5)
1

2πi

∫

|w|=
1
5

(1 + w)2m+
1
2

wm+1
=

(

2m + 1
2

m

)

.

The identity

(6.6)

(

2m + 1
2

m

)

= 2−2m

(

4m + 1

2m

)

completes the proof.

7. A partial combinatorial proof

Consider the set X of lattice paths in the plane that start at (0, 0), taking unit
steps N = (0, 1), S = (0,−1), E = (1, 0) and W = (−1, 0), of odd length 2m + 1,
and ending at the y-axis. It is clear that the number of E steps is the same as
the W steps, call it j. Choose the steps that are either E or W in

(

2m+1
2j

)

ways.

Then choose which is E and which is W in
(

2j
j

)

ways. Finally choose the remaining

2m + 1 − 2j steps to be either N or S in 22m+1−2j ways. This gives

(7.1) |X | =

m
∑

j=0

(

2m + 1

2j

)(

2j

j

)

22m+1−2j.

Thus, the right hand side of (1.2) gives the cardinality of the set X , aside from the
factor 22m.

The size of X is now evaluated by exhibiting a bijection between X and Y that
makes counting simpler. The new set Y is formed by all paths on the x-axis that
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start and end at 0, take steps e = +1 and w = −1, and have length 4m + 2. It will
be shown that there is a bijection from Y to X . Clearly there must be 2m + 1 of
each kind of steps, and so the size of Y is

(7.2) |Y | =

(

4m + 2

2m + 1

)

.

The proof is completed by noticing that there is a simple bijection between X and
Y given by

(7.3) E 7→ ee, W 7→ ww, N 7→ ew, S 7→ we.

It remains to produce a combinatorial interpretation of the left hand side of
(1.2). The reader is invited to produce one: the authors have been unable to do so.
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