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AN INTEGRAL WITH THREE PARAMETERS. PART 2.

GEORGE BOROS, VICTOR H. MOLL, AND ROOPA NALAM

Abstract. In this paper we use the exact expression for the integral

I(a, b; r) :=

∫ ∞
0

(
x2

x4 + 2ax2 + 1

)r
·
x2 + 1

xb + 1
·
dx

x2

to give unifying proofs of several results in Classical Analyisis.

1. Introduction

In this paper we present some consequences of the closed-form evaluation

I(a, b; r) :=
∫ ∞

0

(
x2

x4 + 2ax2 + 1

)r
· x

2 + 1
xb + 1

· dx
x2

=
B(r − 1

2 ,
1
2 )

2
1
2 +r (a+ 1)r−

1
2

,(1.1)

described in [2]. Here B is the beta function. Some of the integrals given here are
new in the sense that they cannot be computed by a symbolic language or found
in a table of integrals. We have used Mathematica 4.0 and Maple V as sources for
the former, and Gradshteyn and Ryzhik [12] for the latter. The classical results
presented in Section 3 are admitedly well known. The value of our contribution
lies in the fact that these results (and many more) follow directly from the master
formula (1.6).

The main result of [2] is reproduced here in Theorem 1.1 below. Conditions on
the parameters a, b and r that guarantee convergence of the integral I(a, b; r) will
always be assumed; these are the only conditions on the parameters: in particular,
a > −1 and r > 1

2 are sufficient, but r is not required to be an integer.
Theorem 1.1. The four integrals

I1 =
∫ ∞

0

(
x2

x4 + 2ax2 + 1

)r
· x

2 + 1
xb + 1

· dx
x2

(1.2)

I2 =
∫ ∞

0

(
x2

x4 + 2ax2 + 1

)r
· dx
x2

(1.3)

I3 =
∫ ∞

0

(
x2

x4 + 2ax2 + 1

)r
dx(1.4)

I4 =
1
2

∫ ∞
0

(
x2

x4 + 2ax2 + 1

)r
· x

2 + 1
x2

dx(1.5)

have the common value

I(a, b; r) =
B(r − 1

2 ,
1
2 )

2
1
2 +r (a+ 1)r−

1
2

.(1.6)
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The results presented here are restricted to evaluation of integrals by strictly
elementary methods. The techniques developed in [2] are an essential part of the
algorithm for integration of rational functions given in [6, 7]. We expect that
the examples discussed here will lead to a general technique for the evaluation of
integrals of the form

I :=
∫ ∞

0

R1(x) lnR2(x) dx(1.7)

for rational functions R1, R2.

2. Examples from a master formula

The master formula (1.6) was used in [2] to evaluate a large class of definite
integrals. In this section we produce additional families of integrals which can be
derived directly from it.

2.1. Special evaluations. The master formula (1.6) gives, for specific values of
the parameters, the values of certain definite integrals.

Example 2.1.1. The choice a = 2, r = 4/3 and b = 2 gives∫ ∞
0

x2/3 dx

(x4 + 4x2 + 1)4/3
=

√
π Γ
(

5
6

)
2 6
√

7776 Γ
(

4
3

) .(2.1)

We could not (directly) evaluate (2.1) with a symbolic language.

Example 2.1.2. Letting a = 1/2 and r = 4 in (1.3) yields∫ ∞
0

x6 dx

(x4 + x2 + 1)4
=

5π
864
√

3
.(2.2)

The evaluation of (2.2) by Mathematica 4.0 took 20.81 seconds.

Example 2.1.3. The fact that the integral in (1.2) is independent of the parameter
b may be used to evaluate additional integrals. For example, a = 1/2, r = 4 as
above and now b = 5 yields∫ ∞

0

x6 (x2 + 1) dx
(x5 + 1)(x4 + x2 + 1)4

=
5π

864
√

3
.(2.3)

Mathematica 4.0 evaluated (2.3) in 331.26 seconds, a large part of which was em-
ployed in simplifying the answer.

2.2. New integrals by differentiation. Several interesting evaluations can be
obtained from the special case a = 1 in (1.6) written as∫ ∞

0

(
x

x2 + 1

)c+1

· x
2 + 1
xb + 1

· dx
x2

= 2−(c+1)B
(
c
2 ,

1
2

)
(2.4)

where c := 2r − 1.



AN INTEGRAL WITH THREE PARAMETERS. PART 2. 3

Example 2.2.1. Differentiating (2.4) with respect to b yields a 2-parameter family
of vanishing integrals:

H(b, c) :=
∫ ∞

0

xb+c−1 lnx
(x2 + 1)c (xb + 1)2

dx = 0.(2.5)

The vanishing of H(b, c) can be established directly by the change of variable
x 7→ 1/x.

Note. Observe that the 3-parameter integral

H1(a, b, c) :=
∫ ∞

0

xa lnx
(x2 + 1)c (xb + 1)2

dx(2.6)

is not identically zero. For example, Mathematica 4.0 yields∫ ∞
0

x2 lnx
(x2 + 1)(x+ 1)2

dx =
π2

16

and ∫ ∞
0

x lnx
(x2 + 1) (x3 + 1)2

dx =
2π
81

(π − 3
√

3).

Example 2.2.2. Differentiation of (2.5) with respect to the parameter b yields∫ ∞
0

xb+c−1 (xb − 1) (lnx)2

(x2 + 1)c (xb + 1)3
dx = 0.(2.7)

The identity (2.7) also follows directly from the change of variable x 7→ 1/x.

Note. More interesting examples can be obtained by forcing the parameter c in
(2.4) to be a function of b before differentiating. For instance c := b− 1 yields

2
∫ ∞

0

ln2 x

(x+ 1)3
dx =

∫ ∞
0

lnx ln(x2 + 1)
(x+ 1)2

dx

at b = 1. Mathematica 4.0 evaluates both sides as π2/3. For b = 2 we have

2
∫ ∞

0

x2 ln2 x

(x2 + 1)4
dx =

∫ ∞
0

x2 lnx ln(x2 + 1)
(x2 + 1)3

dx.

Mathematica 4.0 gives the correct result π(π2 − 8)/64 for the right-hand side, but
(incorrectly) gives 0 for the integral on the left1.

Example 2.2.3. Differentiaton of (2.5) with respect to c yields the identity∫ ∞
0

xb+c−1 ln2 x

(x2 + 1)c (xb + 1)2
dx =

∫ ∞
0

xb+c−1 lnx ln(x2 + 1)
(x2 + 1)c (xb + 1)2

dx.(2.8)

For b = c = 1 we have∫ ∞
0

x ln2 x

(x2 + 1)(x+ 1)2
dx =

∫ ∞
0

x lnx ln(x2 + 1)
(x2 + 1)(x+ 1)2

dx.(2.9)

1V. Adamchik has informed us that this problem has been corrected for the next edition of
Mathematica.



4 GEORGE BOROS, VICTOR H. MOLL, AND ROOPA NALAM

Mathematica 4.0 evaluates both integrals as π2(3π − 8)/48, but it takes 1.47 sec-
onds to evaluate the left-hand side and 82.61 seconds to evaluate the right-hand side.

Example 2.2.4. The case a = 1 of (1.6) yields∫ ∞
0

(
x

x2 + 1

)2r

· x
2 + 1
xb + 1

· dx
x2

= 2−2rB
(
r − 1

2 ,
1
2

)
.(2.10)

Differentiating (2.10) m times with respect to r gives

∫ ∞
0

f2r−1(x) lnm (f(x))
dx

x(xb + 1)
=

√
π

2m+1

(
d

dr

)m Γ(r − 1
2 )

Γ(r) 22r−1
,(2.11)

where f(x) := x/(x2 + 1).

In the special case r = 1 the right-hand side of (2.11) is a linear combination
of products of the constants π, ln 2 and the values of the zeta function at odd
integers. Assigning the weights w(π) = w(ln 2) = 1 and w(ζ(j)) = j and defining
the weight of a monomial in additive fashion, we see that the value of this integral
is a homogeneous polynomial of weight m. For example

1
π

∫ ∞
0

ln
(

x

x2 + 1

)
dx

(x2 + 1)2
= − ln 2

2
1
π

∫ ∞
0

ln2

(
x

x2 + 1

)
dx

(x2 + 1)2
=

1
48

(48 ln2 2 + π2)

1
π

∫ ∞
0

ln3

(
x

x2 + 1

)
dx

(x2 + 1)2
= −1

8
(16 ln3 2 + 3ζ(3) + π2 ln 2 )

1
π

∫ ∞
0

ln4

(
x

x2 + 1

)
dx

(x2 + 1)2
=

19
960

π4 +
1
2
π2 ln2 2 + 4 ln4 2 + 3ζ(3) ln 2.

Mathematica 4.0 evaluates only the first two cases.

2.3. A family of polynomials. In this subsection we produce by differentiation
a family of vanishing integrals.
Theorem 2.1. There exists a family of polynomials Qn(t) := an0 +an1 t+ · · ·+annt

n

such that ∫ ∞
0

xb+c−1 lnn+1 x

(xb + 1)n+2 (x2 + 1)c
×Qn(−xb) dx = 0.(2.12)

The polynomials Qn are symmetric (i.e. Qn(t−1) = t−nQn(t)), of degree n, have
positive integer coefficients, and satisfy the differential-difference equation

Qn+1(t) = t(1− t) d

dt
Qn(t) + (1 + (n+ 1)t)Qn(t).(2.13)

Moreover, the coefficients anj are unimodal with mode bn2 c.

Proof. Differentiate the integrand in (2.5) n times to produce(
d

db

)n
xb+c−1 lnx

(x2 + 1)c (xb + 1)2
=

xb+c−1 lnn+1 x

(xb + 1)n+2 (x2 + 1)c
×Qn(−xb)(2.14)
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for some function Qn(t). Equation (2.13) then follows by induction, and we thus
see that Qn(t) is a polynomial (using the initial condition Q0(t) = 1). Equation
(2.13) also yields the recursion

an+1
0 = an0

an+1
j = (j + 1)anj + (n+ 2− j)anj−1 for 1 ≤ j ≤ n
an+1
n+1 = ann,

from which we conclude the positivity and the symmetry of the coefficients of Qn.

Finally, we show unimodality by induction. For 1 ≤ j ≤ bn2 c we have

an+1
j − an+1

j−1 = (j + 1)anj + (n+ 2− 2j)anj−1 − (n+ 3− j)anj−2

≥ (n+ 3− j)
(
anj−1 − anj−2

)
,

and the second part follows by symmetry. �

The first values of Qn(t) are

Q0(t) = 1(2.15)
Q1(t) = t+ 1
Q2(t) = t2 + 4t+ 1
Q3(t) = t3 + 11t2 + 11t+ 1
Q4(t) = t4 + 26t3 + 66t2 + 26t+ 1
Q5(t) = t5 + 57t4 + 302t3 + 302t2 + 57t+ 1.

Note. Unimodal polynomials are linked to integration formulae. For example, we
have shown in [3, 4, 5] that Pm(a) defined via

Pm(a) :=
1
π

2m+3/2(a+ 1)m+1/2

∫ ∞
0

dx

(x4 + 2ax2 + 1)m+1
(2.16)

is a unimodal polynomial and is given explicitly by

Pm(a) = 2−2m
m∑
k=0

2k
(

2m− 2k
m− k

)(
m+ k

m

)
(a+ 1)k.(2.17)

2.4. New integrals by integration. Integrating (2.11) with respect to b from b1
to b2 and using ∫ b2

b1

db

xb + 1
=

1
lnx

ln
(
xb2 (xb1 + 1)
xb1 (xb2 + 1)

)
we obtain

∫ ∞
0

(
x

x2 + 1

)2r−1 [
ln
(

x

x2 + 1

)]m
ln
(
xb2 (xb1 + 1)
xb1 (xb2 + 1)

)
dx

x lnx
(2.18)

= (b2 − b1)
√
π

2m+1

(
d

dr

)m Γ(r − 1
2 )

Γ(r) 22r−1
.

Example 2.4.1. The case m = 0, b2 = 1 and b1 = 2p+ 1 with p ∈ N yields
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∫ ∞
0

(
x

x2 + 1

)2r−1

×
{

ln(x2p − x2p−1 + · · · − x+ 1)
lnx

− 2p
}
dx

x
= − p

22r−1
B
(
r − 1

2 ,
1
2

)
.

Using ∫ ∞
0

x2r−2 dx

(x2 + 1)2r−1
= 1

2B
(
r − 1

2 , r −
1
2

)
and

1
2B
(
r − 1

2 , r −
1
2

)
− 2−2r+1B

(
r − 1

2 ,
1
2

)
=

π

24r−3

(
2r − 2
r − 1

)
we get2

∫ ∞
0

(
x

x2 + 1

)2r+1

×
{

ln(x2p − x2p−1 + · · · − x+ 1)
lnx

}
dx

x
=

pπ

24r+1

(
2r
r

)
.

(2.19)

The case r = 0 and p = 1 gives∫ ∞
0

ln(x2 − x+ 1)
(x2 + 1) lnx

dx =
π

2
.(2.20)

We were unable to evaluate (2.20) symbolically.

Example 2.4.2. We now sum (2.19) from r = 0 to r = ∞. The series resulting
from the right-hand side can be summed by Mathematica as

pπ

2

∞∑
r=0

2−4r

(
2r
r

)
=

p π√
3
.

A more traditional evaluation is discussed in Theorem 3.6. Summing the integrals
on the left-hand side we obtain

∫ ∞
0

x2 + 1
x4 + x2 + 1

×
{

ln(x2p − x2p−1 + · · · − x+ 1)
lnx

}
dx =

pπ√
3
.(2.21)

Example 2.4.3. For p = 1 we get∫ ∞
0

x2 + 1
x4 + x2 + 1

× ln(x2 − x+ 1)
lnx

dx =
π√
3
.

Example 2.4.4. Differentiating (2.19) with respect to the parameter p yields∫ ∞
0

x2(r+p) dx

(x2 + 1)2r+1(x2p + 1)
=

π

24r+1

(
2r
r

)
.

Example 2.4.5. Differentiating (2.21) with respect to the parameter r yields∫ ∞
0

x2r

(x2 + 1)2r+1 lnx
· ln
(

x

x2 + 1

)
· ln
(
x2p + 1
x+ 1

)
dx =

d

dr

(
pπ

24r+2

Γ(2r + 1)
Γ2(r + 1)

)
.

2Observe the change in the exponent from the usual 2r − 1 to 2r + 1.
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For r = 1 and p = 1 we obtain∫ ∞
0

x2

(x2 + 1)3 lnx
· ln
(

x

x2 + 1

)
· ln
(
x2 + 1
x+ 1

)
dx = − π

32
(4 ln 2− 1).

None of the last three examples could be done symbolically.

3. Some results from Classical Analysis

In this section we derive several classical results from (1.6). We start with Wal-
lis’ formula, continue with Legendre’s duplication formula for the gamma function,
and conclude with the generating function for the central binomial coefficients.

Theorem 3.1. Wallis’ formula. Let r > −1. Then∫ π/2

0

sinr ϕdϕ = 1
2B
(
r+1

2 , 1
2

)
.(3.1)

Proof. The formulae for I2 and I3 in the special case a = 1 yield∫ ∞
0

x−2 (x+ 1/x)−2rdx = 2−2rB
(
r − 1

2 ,
1
2

)
(3.2)

and ∫ ∞
0

(x+ 1/x)−2rdx = 2−2rB
(
r − 1

2 ,
1
2

)
.(3.3)

The sum of (3.2) and (3.3) gives∫ ∞
0

(1 + x−2) (x+ 1/x)−2rdx = 21−2rB
(
r − 1

2 ,
1
2

)
,(3.4)

and the change of variable x 7→ tanϕ then converts (3.4) into (3.1).
�

Corollary 3.2. Let b, c ∈ R+, a > −
√
bc and r > 1/2. Then∫ ∞

0

(
x2

bx4 + 2ax2 + c

)r
dx =

B
(
r − 1

2 ,
1
2

)
2r+1/2

√
b (a+

√
bc)r−1/2

.(3.5)

Proof. Let x 7→ (c/b)1/4u and use (1.6).
�

Corollary 3.3. Let b, c ∈ R+ and a > −
√
bc. Then∫ ∞

0

x2 dx

bx4 + 2ax2 + c
=

π

2
√

2b(a+
√
bc)

(3.6)

and ∫ ∞
0

dx

bx4 + 2ax2 + c
=

π

2
√

2c(a+
√
bc)

.(3.7)

In particular,

N0,4(a; 0) :=
∫ ∞

0

dx

x4 + 2ax2 + 1
=

π

2
√

2(a+ 1)
.(3.8)
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Proof. Let r = 1 in Corollary 3.2 to produce (3.6). The change of variables x 7→ 1/x
yields (3.7).

�

Example 3.1.1. Letting a = 2, b = 5 and c = 9 in (3.7) gives∫ ∞
0

dx

5x4 + 4x2 + 9
=

π

2
√

18(2 + 3
√

5)
.(3.9)

Note. The integral N0,4(a; 0) is part of the family

Nr,4(a;m) :=
∫ ∞

0

x2r dx

(x4 + 2ax2 + 1)m+1
, r ∈ N ∪ {0},(3.10)

which is evaluated in [7] as

π

23m+3/2 (1 + a)m+1/2
×
m−r∑
j=0

2j(1 + a)j
(

2m− 2j
m− j

)(
m− r + j

2j

)(
2j
j

)(
m

j

)−1

provided 0 ≤ r ≤ m. If m+ 1 ≤ r ≤ 2m+ 1, the change of variable x 7→ 1/x yields
Nr,4(a;m) = N2m+1−r,4(a;m). For example, a = 4, m = 11 and r = 5 give∫ ∞

0

x10 dx

(x4 + 8x2 + 1)12
=

195240969 π
104857600000000000

√
10
.

Theorem 3.4. Legendre’s duplication formula for Γ. For r ∈ R+ we have

Γ(2r) = 22r−1 Γ(r + 1
2 )Γ(r)
√
π

,(3.11)

which yields

Γ(n+ 1
2 ) =

(2n)!
22nn!

√
π(3.12)

for n ∈ N.

Proof. Let b = a2 and c = 1 in Corollary 3.2 to produce∫ ∞
0

x2r dx

(ax2 + 1)2r
=

B
(
r − 1

2 ,
1
2

)
22r ar+1/2

.(3.13)

The change of variable ax2 7→ t and the relation

B(p, q) =
∫ ∞

0

zp−1 dz

(z + 1)p+q

then yield

22r−1B
(
r − 1

2 , r + 1
2

)
= B

(
r − 1

2 ,
1
2

)
,(3.14)

from which (3.11) follows after using the functional equation

B(p, q) =
Γ(p) Γ(q)
Γ(p+ q)

(3.15)

and Γ( 1
2 ) =

√
π. The relation Γ(n) = (n− 1)! yields (3.12).

�
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Note. An alternate proof of Legendre’s duplication formula is discussed in [16].
The Mellin transform

M(f(x))(s) :=
∫ ∞

0

f(x)xs−1dx

satisfies

M(f ∗ g) = M(f) ·M(g)(3.16)

where

(f ∗ g)(x) :=
∫ ∞

0

f(x/u)g(u)
du

u
.

The identity (3.16) applied to the functions f(x) = e−x and g(x) = x−1/2e−x yields
(3.11).

Still another proof of (3.11) is found in the text [9]. This clever proof is due to
Serret. Here the integral

B(r, r) =
∫ 1

0

(
x− x2

)r−1
dx =

∫ 1

0

(
1/4− (1/2− x)2

)r−1
dx

is seen to be 21−2pB(1/2, p) by the change of variable (1/2 − x)2 7→ x/4. The
functional equation (3.15) then yields the result.
Corollary 3.5. Let n ∈ N. Then∫ π/2

0

sin2n+1 x dx =
2
3
· 4

5
· 6

7
· · · 2n

2n+ 1
=

22n (n!)2

(2n+ 1)!
(3.17)

and ∫ π/2

0

sin2n x dx =
π

2
· 1

2
· 3

4
· 5

6
· · · 2n− 1

2n
=

(2n)! π
22n+1 (n!)2

.(3.18)

Proof. Use Wallis’ formula (3.1) and (3.12). �

Theorem 3.6. Generating function for
(

2r
r

)
. The generating function for the

central binomial coefficients is given by
∞∑
r=0

(
2r
r

)
tr =

1√
1− 4t

.(3.19)

Proof. For r ∈ N the expression in (1.6) reduces to∫ ∞
0

(
x2

x4 + 2ax2 + 1

)r
dx = 2π

√
2(1 + a)

(
2r − 2
r − 1

)
[8(1 + a)]−r,(3.20)

using (3.15) and (3.12) to simplify the right-hand side. Now sum (3.20) from r = 1
to r =∞. The sum of the integrals on the left-hand side can be evaluated as∫ ∞

0

x2 dx

x4 + (2a− 1)x2 + 1
=

π

2
√

2a+ 1

using (3.6). The proof is completed by letting t = [8(1 + a)]−1.
�
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4. An integral of degree 8

We now employ (1.6) to evaluate the integral of a symmetric rational function
of degree 8. We call a rational function symmetric if its denominator Q satisfies
Q(1/x) = xdeg(Q)Q(x). These functions are the basis for an algorithm to integrate
even rational functions developed in [7].
Theorem 4.1. Define

M8(a1, a2; r) :=
∫ ∞

0

(
x4

x8 + a2x6 + 2a1x4 + a2x2 + 1

)r
dx,(4.1)

where r ∈ N and a1 > max {−a2 − 1,−sign(a2 + 4)×
(
a2

2/8 + 1
)
}. Then

M8(a1, a2; r) = c1/4−rN0,4

(
a2 + 4
2
√
c

; r − 1
)
,(4.2)

where c = 2(a1 + a2 + 1).

Proof. The change of variable x 7→ 1/x yields a new form of the integral M8:

M8(a1, a2; r) =
∫ ∞

0

(
x4

x8 + a2x6 + 2a1x4 + a2x2 + 1

)r
dx

x2
.(4.3)

Computing the average of these two forms and letting x = tan θ and then ψ = 2θ
produces

M8(a1, a2; r) = 2−r+1

∫ π

0

(1− C)2r−1 dψ

[ (a1 − a2 + 1)C2 + 7(2− a1 − a2)C + (17 + 3a2 + a1) ]r
,

where C = cosψ. The substitution z = cotgψ then gives

M8(a1, a2; r) = 2−r+1

∫ ∞
0

dz

(8z4 + 2(a2 + 4)z2 + (a1 + a2 + 1))r
.(4.4)

The change of variable z 7→ (8/(a1 + a2 + 1))1/4t and (3.10) yield (4.2). �

Theorem 4.2. The generating function for
(

4r+1
2r

)
is

∞∑
r=0

(
4r + 1

2r

)
tr =

√
2

√
1− 16t

√
1 +
√

1− 16t
.(4.5)

Proof. The result of Theorem 4.1 is summed form r = 1 to r = ∞. The integrals
on the left-hand side add up to∫ ∞

0

x4 dx

x8 + a2x6 + (2a1 − 1)x4 + a2x2 + 1
= c−3/4N0,4

(
a2 + 4
2
√
c

; 0
)

using Theorem 4.1 with r = 1. We thus have
∞∑
r=0

c−rN0,4

(
a2 + 4
2
√
c

; r
)

=
(

c

c− 1

)3/4

N0,4

(
a2 + 4

2
√
c− 1

; 0
)
.

Now choose a2 = 2
√

2(a1 − 1) so that the argument of N0,4 in the series is 1 and
employ

N0,4(1; r) =
1
2
B
(

1
2 , 2r + 3

2

)
=

π

24r+2

(
4r + 1

2r

)
(4.6)

to obtain (4.5). �
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5. The Fresnel integrals

The evaluation of Fresnel integrals

F0 =
∫ ∞

0

cosx2 dx and G0 =
∫ ∞

0

sinx2 dx(5.1)

by contour integration appears in Laurent’s classical book [14]. According to Rem-
mert [17] the expressions for F0 and G0 were known to Euler [10]. The calculation of
(5.1) appears as an exercise in most texts in Complex Analysis, for instance in [1], p.
206 and in [15]. The evaluation of (5.1) by strictly real-variable methods appears in
[9, 11, 13, 18, 19]. The proof presented here is a modification of Leonard’s proof [13].

Theorem 5.1. The Fresnel integrals

F (t) :=
∫ ∞

0

e−tx
2

cosx2 dx and G(t) :=
∫ ∞

0

e−tx
2

sinx2 dx(5.2)

are given by

F (t) =
√
π

8

√√
1 + t2 + t

1 + t2
and G(t) =

√
π

8

√√
1 + t2 − t
1 + t2

.(5.3)

In particular

F0 =
∫ ∞

0

cosx2 dx and G0 =
∫ ∞

0

sinx2 dx(5.4)

have the common value
√
π/8.

Proof. The change of variable x 7→
√
x converts (5.2) into

G(t) =
1
2

∫ ∞
0

e−xt
sinx√
x
dx.(5.5)

Observe that ∫ ∞
0

e−x
2
dx =

√
π

2

yields

1√
x

=
1√
π

∫ ∞
0

e−xs√
s
ds,(5.6)

so replacing (5.6) in (5.5) gives

G(t) =
1
2

∫ ∞
0

e−xt sinx
(

1√
π

∫ ∞
0

e−xs√
s
ds

)
dx.

Now reverse the order of integration and use∫ ∞
0

e−ax sinx dx =
1

1 + a2

to obtain, with s 7→ u2,

G(t) =
1

2
√
π

∫ ∞
0

1
1 + (t+ s)2

ds√
s

=
1√
π

∫ ∞
0

du

1 + (u2 + t)2
.
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Similarly,

F (t) =
1√
π

∫ ∞
0

(u2 + t) du
1 + (u2 + t)2

.(5.7)

The evaluation of F and G in [13] by partial fractions is elementary but long. In our
proof the values of G(t) and F (t) are direct consequences of the quartic integrals
evaluated in Section 3. From Corollary 3.3 we have

G(t) =
1√
π

∫ ∞
0

du

u4 + 2tu2 + (1 + t2)
=

√
π√

8(1 + t2)
×
√√

1 + t2 − t

and

F (t) =
1√
π

∫ ∞
0

u2 du

u4 + 2tu2 + 1 + t2
+

t√
π

∫ ∞
0

du

u4 + 2tu2 + 1 + t2
,

=
√
π√

8(1 + t2)
×
√√

1 + t2 + t.

�

6. Conclusions

We have presented consequences of an exact evaluation of an integral with three
parameters. Many classical results can be derived from it. In addition, we have
been able to evaluate a large number of definite integrals which cannot be found in
standard tables and cannot be evaluated by standard symbolic packages.
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