THE 2-ADIC VALUATION OF STIRLING NUMBERS

TEWODROS AMDEBERHAN, DANTE MANNA, AND VICTOR H. MOLL

Abstract

We analyze properties of the 2-adic valuations of $S(n, k)$, the Stirling numbers of the second kind. A conjecture that describes patterns of these valuations for fixed k and n modulo powers of 2 is presented. The conjecture

 is established for $k=5$.
1. Introduction

Divisibility properties of integer sequences have long been objects of interest. In modern language these are expressed in terms of p-adic valuations: given a prime p and a positive integer m, there exist unique integers a, n, with a not divisible by p and $n \geq 0$, such that $m=a p^{n}$. The number n is called the p-adic valuation of m. We write $n=\nu_{p}(m)$. Thus, $\nu_{p}(m)$ is the highest power of p that divides m. The graph in Figure 1 shows the function $\nu_{2}(m)$. Here and elsewhere in this paper we connect succesive points in the graph in order to visually convey the rises and drops of the sequence.

Figure 1. The 2-adic valuation of m

A celebrated example is due to Legendre [8], who established

$$
\begin{equation*}
\nu_{p}(m!)=\frac{m-s_{p}(m)}{p-1} \tag{1.1}
\end{equation*}
$$

Here $s_{p}(m)$ is the sum of the base p-digits of m. In particular,

$$
\begin{equation*}
\nu_{2}(m!)=m-s_{2}(m) \tag{1.2}
\end{equation*}
$$

[^0]The reader will find in [7] details about this identity. Figure 2 shows the graph of $\nu_{2}(m!)$ exhibiting its linear growth. The binary expansion of m is $m=a_{0}+a_{1}$. $2+a_{2} \cdot 2^{2}+\ldots+a_{r} \cdot 2^{r}$, with $a_{j} \in\{0,1\}$, so that $2^{r} \leq m \leq 2^{r+1}$. Therefore $s_{2}(m)=O\left(\log _{2}(m)\right)$ and we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\nu_{2}(m!)}{m}=1 \tag{1.3}
\end{equation*}
$$

Figure 3 shows the error term $s_{2}(m)=m-\nu_{2}(m!)$.

Figure 2. The 2-adic valuation of m !

Figure 3. The error $\nu_{2}(m!)-m$

Legendre's result (1.2) provides an elementary proof of Kummer's identity

$$
\begin{equation*}
\nu_{2}\left(\binom{m}{k}\right)=s_{2}(k)+s_{2}(m-k)-s_{2}(m) \tag{1.4}
\end{equation*}
$$

Not many explicit identities of this type are known.
The function ν_{p} is extended to \mathbb{Q} by defining $\nu_{p}\left(\frac{a}{b}\right)=\nu_{p}(a)-\nu_{p}(b)$. The p-adic metric is then defined by

$$
\begin{equation*}
|r|_{p}:=p^{-\nu_{p}(m)} \tag{1.5}
\end{equation*}
$$

It satisfies the ultrametric inequality

$$
\begin{equation*}
\left|r_{1}+r_{1}\right|_{p} \leq \operatorname{Max}\left\{\left|r_{1}\right|_{p},\left|r_{2}\right|_{p}\right\} \tag{1.6}
\end{equation*}
$$

The completion of \mathbb{Q} under this metric, denoted by \mathbb{Q}_{p}, is the field of p-adic numbers. The set $\mathbb{Z}_{p}:=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}$ is the ring of p-adic integers.

Our interest in 2-adic valuations started with the sequence

$$
\begin{equation*}
b_{l, m}:=\sum_{k=l}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{l} \tag{1.7}
\end{equation*}
$$

for $m \in \mathbb{N}$ and $0 \leq l \leq m$. This sequence appears in the evaluation of the definite integral

$$
\begin{equation*}
N_{0,4}(a ; m)=\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} . \tag{1.8}
\end{equation*}
$$

In [2], it was shown that the polynomial defined by

$$
\begin{equation*}
P_{m}(a):=2^{-2 m} \sum_{l=0}^{m} b_{l, m} a^{l} \tag{1.9}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
P_{m}(a)=2^{m+3 / 2}(a+1)^{m+1 / 2} N_{0,4}(a ; m) / \pi . \tag{1.10}
\end{equation*}
$$

The reader will find in [3] more details on this integral.
The results on the 2-adic valuations of $b_{l, m}$ are expressed in terms of

$$
\begin{equation*}
A_{l, m}:=\frac{l!m!}{2^{m-l}} b_{l, m} \tag{1.11}
\end{equation*}
$$

The coefficients $A_{l, m}$ can be written as

$$
\begin{equation*}
A_{l, m}=\alpha_{l}(m) \prod_{k=1}^{m}(4 k-1)-\beta_{l}(m) \prod_{k=1}^{m}(4 k+1) \tag{1.12}
\end{equation*}
$$

for some polynomials α_{l}, β_{l}, with integer coefficients and of degree l and $l-1$ respectively. The next remarkable property was conjectured in [4] and established by J. Little in [10].

Theorem 1.1. All the zeros of $\alpha_{l}(m)$ and $\beta_{l}(m)$ lie on the vertical line $\operatorname{Re} m=-\frac{1}{2}$.
The next theorem, presented in [1], gives 2-adic properties of $A_{l, m}$.
Theorem 1.2. The 2-adic valuation of $A_{l, m}$ satisfies

$$
\begin{equation*}
\nu_{2}\left(A_{l, m}\right)=\nu_{2}\left((m+1-l)_{2 l}\right)+l, \tag{1.13}
\end{equation*}
$$

where $(a)_{k}=a(a+1)(a+2) \cdots(a+k-1)$ is the Pochhammer symbol.
The identity

$$
\begin{equation*}
(a)_{k}=\frac{(a+k-1)!}{(a-1)!} \tag{1.14}
\end{equation*}
$$

and Legendre's identity (1.2) yields the next expression for $\nu_{2}\left(A_{l, m}\right)$.
Corollary 1.3. The 2-adic valuation of $A_{l, m}$ is given by

$$
\begin{equation*}
\nu_{2}\left(A_{l, m}\right)=3 l-s_{2}(m+l)+s_{2}(m-l) \tag{1.15}
\end{equation*}
$$

There are many other examples of 2-adic valuations considered in the literature. H. Cohen [6] has discussed the sum ${ }^{1}$

$$
\begin{equation*}
C_{k}(n):=\sum_{j=1}^{n} \frac{2^{j}}{j^{k}} . \tag{1.16}
\end{equation*}
$$

These are the partial sums of the polylogarithmic series

$$
\begin{equation*}
\operatorname{Li}_{k}(x):=\sum_{j=1}^{\infty} \frac{x^{j}}{j^{k}} \tag{1.17}
\end{equation*}
$$

The series converges in \mathbb{Q}_{2} provided $\nu_{2}(x) \geq 1$. Cohen proves that

$$
\begin{equation*}
\nu_{2}\left(C_{1}\left(2^{m}\right)\right)=2^{m}+2 m-4, \text { for } m \geq 4 \tag{1.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{2}\left(C_{2}\left(2^{m}\right)\right)=2^{m}+m-1, \text { for } m \geq 4 \tag{1.19}
\end{equation*}
$$

The graph in Figure 4 shows the linear growth of $\nu_{2}\left(s_{1}(m)\right)$ and Figure 5 presents the error term $\nu_{2}\left(s_{1}(m)\right)-m$.

Figure 4. The 2-adic valuation of $C_{1}(m)$

Figure 5. The error $\nu_{2}\left(C_{1}(m)\right)-m$

[^1]In this paper we analyze the 2 -adic valuation of the Stirling numbers of the second kind $S(n, k)$, defined for $n \in \mathbb{N}$ and $0 \leq k \leq n$ as the number of ways to partition a set of n elements into exactly k nonempty subsets. The next figures show the function $\nu_{2}(S(n, k))$ for fixed k. These graphs indicate the complexity of this problem.

Figure 6. The data for $S(n, 5)$

Figure 7. The data for $S(n, 75)$

Section 6 gives a larger selection of these type of pictures.
Main conjecture. We describe an algorithm that leads to a first description of the function $\nu_{2}(S(n, k))$ as depicted in the graphs above. The conjecture is stated here and the special case $k=5$ is established in Section 4.

Definition 1.4. Let $k \in \mathbb{N}$ be fixed and $m \in \mathbb{N}$. Then for $0 \leq j<2^{m}$ define

$$
\begin{equation*}
C_{m, j}:=\left\{2^{m} i+j: \quad i \in \mathbb{N}\right\} \tag{1.20}
\end{equation*}
$$

The first value of the index i is the smallest one that yields $2^{m} i+j \geq k$. For example, for $k=5$ and $m=6$, we have

$$
\begin{equation*}
C_{6,28}=\left\{2^{6} i+28: \quad i \geq 0\right\} \tag{1.21}
\end{equation*}
$$

Figure 8. The data for $S(n, 195)$

We use the notation

$$
\begin{equation*}
\nu_{2}\left(C_{m, j}\right)=\left\{\nu_{2}\left(S\left(2^{m} i+j, k\right)\right): i \in \mathbb{N}\right\} \tag{1.22}
\end{equation*}
$$

The classes $C_{m, j}$ form a partition of \mathbb{N} into classes modulo 2^{m}. For example, for $m=2$, we have the four classes

$$
\begin{aligned}
C_{2,0}=\left\{2^{2} i: i \in \mathbb{N}\right\}, & C_{2,1}=\left\{2^{2} i+1: i \in \mathbb{N}\right\}, \\
C_{2,2}=\left\{2^{2} i+2: i \in \mathbb{N}\right\}, & C_{2,3}=\left\{2^{2} i+3: i \in \mathbb{N}\right\} .
\end{aligned}
$$

The class $C_{m, j}$ is called constant if $\nu_{2}\left(C_{m, j}\right)$ consists of a single value. This single value is called the constant of the class $C_{m, j}$.

For example, Corollary 3.3 shows that $\nu_{2}(S(4 i+1,5))=0$, independently of i. Therefore, the class $C_{2,1}$ is constant. Similarly, $C_{2,2}$ is constant with $\nu_{2}\left(C_{2,2}\right)=0$.

We now introduce inductively the concept of m-level. For $m=1$, the 1-level consists of the two classes

$$
\begin{equation*}
C_{1,0}=\{2 i: i \in \mathbb{N}\} \text { and } C_{1,1}=\{2 i+1: i \in \mathbb{N}\} \tag{1.23}
\end{equation*}
$$

that is, the even and odd integers. Assume that the $m-1$ level has been defined and it consists of the s classes

$$
\begin{equation*}
C_{m-1, i_{1}}, C_{m-1, i_{2}}, \cdots, C_{m-1, i_{s}} \tag{1.24}
\end{equation*}
$$

Each class $C_{m-1, i_{j}}$ splits into two classes modulo 2^{m}, namely, $C_{m, i_{j}}$ and $C_{m, i_{j}+2^{m-1}}$. The m-level is formed by the non-constant classes modulo 2^{m}.

Example 1.5. We describe the case of Stirling numbers $S(n, 10)$. Start with the fact that the 4 -level consists of the classes $C_{4,7}, C_{4,8}, C_{4,9}$ and $C_{4,14}$. These split into the eight classes

$$
C_{5,7}, C_{5,23}, C_{5,8}, C_{5,24}, C_{5,9}, C_{5,25}, C_{5,14}, \text { and } C_{5,30}
$$

modulo 32 . Then one checks that $C_{5,23}, C_{5,24}, C_{5,25}$ and $C_{5,30}$ are all constant (with constant value 2 for each of them). The other four classes form the 5 -level:

$$
\begin{equation*}
\left\{C_{5,7}, C_{5,8}, C_{5,9}, C_{5,14}\right\} \tag{1.25}
\end{equation*}
$$

We are now ready to state our main conjecture.

Conjecture 1.6. Let $k \in \mathbb{N}$ be fixed. Then we conjecture that
a) there exists a level $m_{0}(k)$ and an integer $\mu(k)$, such that, for any $m \geq m_{0}(k)$ the number of non-constant classes of level m is $\mu(k)$, independently of m,
b) moreover, for each $m \geq m_{0}(k)$, each of the $\mu(k)$ non-constant classes split into one constant and one non-constant in order to produce the next level.

Example 1.7. The conjecture is illustrated for $k=11$. We claim that $m_{0}(11)=$ 3 and $\mu(11)=4$. The prediction is that for levels $m \geq 3$ we have four nonconstant classes. Indeed, the classes $C_{2,0}, C_{2,1}, C_{2,2}, C_{2,3}$, have non-constant 2adic valuation. Thus, every class in the 2 -level split according to the diagram. To compute the next step, we observe that

$$
\nu_{2}\left(C_{3,3}\right)=\nu_{2}\left(C_{3,5}\right)=\{0\} \text { and } \nu_{2}\left(C_{3,4}\right)=\nu_{2}\left(C_{3,6}\right)=\{1\},
$$

so there are four constant classes. The remaining four classes $C_{3,0}, C_{3,1}, C_{3,2}$ and $C_{3,7}$ form the 3-level. Observe that each of the four classes from the 2-level splits into a constant class and a class that forms part of the 3-level.

This process continues. At the next step, the classes of the 3-level split in two giving a total of 8 classes modulo 2^{4}. For example, $C_{3,2}$ splits into $C_{4,2}$ and $C_{4,10}$. The conjecture states that exactly one of these classes has constant 2-adic valuation. Indeed, the class $C_{4,2}$ satisfies $\nu_{2}\left(C_{4,2}\right) \equiv 2$ and $\nu_{2}\left(C_{4,10}\right)$ is not constant.

Example 1.8. Figure 9 illustrates this process in the case $k=7$. The first row of the figure shows the classes at level 2 . The class $C_{2,0}$ has constant valuation $\nu_{2}\left(C_{2,0}\right)=2$ and the class $C_{2,3}$ satisfies $\nu_{2}\left(C_{2,3}\right)=0$. The remaining two classes, namely $C_{2,1}$ and $C_{2,3}$ form the second level that split into the pairs $\left\{C_{3,1}, C_{3,5}\right\}$ and $\left\{C_{3,2}, C_{3,6}\right\}$. In each pair we find a class of constant valuation and the second one, non-constant, that will be split to proceed with the diagram.

The diagram shows that $m_{0}(7)=2$ and $\mu(7)=2$.
Example 1.9. A case with a twist is $k=13$. Level 3 has 8 classes and only 3 of them are constant (one expects half of them to be so). The five remaining classes split into 10 with 6 constants classes. At the next splitting, that is at level 5 , we return to the expected count with 8 classes, half of which are non-constant. Thus, in this case, we have $m_{0}(13)=5$ and $\mu(13)=4$.

Elementary formulas. Throughout the paper we will use several elementary properties of $S(n, k)$, listed below:

- Relation to Pochhammer

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} S(n, k)(x-k+1)_{k} \tag{1.26}
\end{equation*}
$$

Figure 9. The splitting for $k=7$

- An explicit formula

$$
\begin{equation*}
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(k-i)^{n} \tag{1.27}
\end{equation*}
$$

- The generating function

$$
\begin{equation*}
\frac{1}{(1-x)(1-2 x)(1-3 x) \cdots(1-k x)}=\sum_{n=1}^{\infty} S(n, k) x^{n} \tag{1.28}
\end{equation*}
$$

- The recurrence

$$
\begin{equation*}
S(n, k)=S(n-1, k-1)+k S(n-1, k) \tag{1.29}
\end{equation*}
$$

Lengyel [9] conjectured, and De Wannemacker [12] proved, a special case of the 2 -adic valuation of $S(n, k)$:

$$
\begin{equation*}
\nu_{2}\left(S\left(2^{n}, k\right)\right)=s_{2}(k)-1, \tag{1.30}
\end{equation*}
$$

independently of n. Here $s_{2}(k)$ is the sum of the binary digits of k. A numerical experiment suggests that

$$
\begin{equation*}
\nu_{2}\left(S\left(2^{n}+1, k+1\right)\right)=s_{2}(k)-1 \tag{1.31}
\end{equation*}
$$

is a companion of (1.30). In the general case, De Wannemacker [13] established the inequality

$$
\begin{equation*}
\nu_{2}(S(n, k)) \geq s_{2}(k)-s_{2}(n), \quad 0 \leq k \leq n \tag{1.32}
\end{equation*}
$$

The difference in (1.32) is more regular if $k-1$ is close to a power of 2 . Figure 10 shows the (irregular) case $k=101$ and Figure 11 shows the smoother case $k=129$.

Figure 10. De Wannemacker difference for $k=101$

Figure 11. De Wannemacker difference for $k=129$

2. The elementary cases

This section presents, for sake of completeness, the 2-adic valuation of $S(n, k)$ for $1 \leq k \leq 4$. The arguments are all elementary.

Lemma 2.1. The Stirling numbers of order 1 are given by $S(n, 1)=1$, for all $n \in \mathbb{N}$. Therefore

$$
\begin{equation*}
\nu_{2}(S(n, 1))=0 \tag{2.1}
\end{equation*}
$$

Proof. There is a unique way to partition a set of n elements into one nonempty set: take them all.

Lemma 2.2. The Stirling numbers of order 2 are given by $S(n, 2)=2^{n}-1$, for all $n \in \mathbb{N}$. Therefore

$$
\begin{equation*}
\nu_{2}(S(n, 2))=0 \tag{2.2}
\end{equation*}
$$

Proof. The formula for $S(n, 2)$ comes from (1.27). It can also be established by induction. Using the recurrence (1.29), and Lemma 2.1 we have

$$
S(n, 2)=S(n-1,1)+2 S(n-1,2)=1+2\left(2^{n-1}-1\right)=2^{n}-1
$$

Lemma 2.3. The Stirling numbers of order 3 are given by

$$
\begin{equation*}
S(n, 3)=\frac{1}{2}\left(3^{n-1}-2^{n}+1\right) \tag{2.3}
\end{equation*}
$$

Moreover

Proof. The expression for $S(n, 3)$ comes from (1.27). An inductive proof also follows directly from the recurrence (1.29)

$$
\begin{equation*}
S(n, 3)=S(n-1,2)+3 S(n-1,3) \tag{2.5}
\end{equation*}
$$

and Lemma 2.2. To prove the expression for $\nu_{2}(S(n, 3))$ we iterate the recurrence and obtain

$$
\begin{equation*}
2^{n}-1=S(n, 3)-\sum_{k=1}^{N-1} 3^{k}\left(2^{n-k}-1\right)-3^{N} S(n-N, 3) \tag{2.6}
\end{equation*}
$$

and with $N=n-1$ we have

$$
\begin{equation*}
S(n, 3)=2^{n}-1-\sum_{k=1}^{n-2} 3^{k}\left(2^{n-k}-1\right) \tag{2.7}
\end{equation*}
$$

If n is odd, then $S(n, 3)$ is odd and $\nu_{2}(S(n, 3))=0$.
For n even, the recurrence (2.5) yields

$$
\begin{equation*}
S(n, 3)=2^{n-1}+3 \cdot 2^{n-2}-4+3^{2} S(n-2,3) \tag{2.8}
\end{equation*}
$$

As an inductive step, assume that $S(n-2,3)=2 T_{n-2}$, with T_{n-2} odd. Then (2.8) yields

$$
\begin{equation*}
\frac{1}{2} S(n, 3)=2^{n-2}+3 \cdot 2^{n-3}+3^{2} T_{n-2}-2 \tag{2.9}
\end{equation*}
$$

and we conclude that $S(n, 3) / 2$ is an odd integer. Therefore $\nu_{2}(S(n, 3))=1$ as claimed.

We now present a second proof of this result using elementary properties of the valuation ν_{2}. In particular we use the ultrametric inequality

$$
\begin{equation*}
\nu_{2}\left(x_{1}+x_{2}\right) \geq \operatorname{Min}\left\{\nu_{2}\left(x_{1}\right), \nu_{2}\left(x_{2}\right)\right\} . \tag{2.10}
\end{equation*}
$$

The inequality is strict unless $\nu\left(x_{1}\right)=\nu_{2}\left(x_{2}\right)$. This inequality is equivalent to (1.6).
Second proof of Lemma 2.3. The powers of 3 modulo 8 satisfy

$$
\begin{equation*}
3^{m}+1 \equiv 2+(-1)^{m+1} \bmod 8 \tag{2.11}
\end{equation*}
$$

because $3^{2 k} \equiv 1 \bmod 8$. Therefore $3^{m}+1=8 t+3+(-1)^{m+1}$, for some $t \in \mathbb{Z}$. Now

$$
\begin{equation*}
\nu_{2}(8 t)=3+\nu_{2}(t)>\nu_{2}\left(3+(-1)^{m+1}\right) \tag{2.12}
\end{equation*}
$$

and the ultrametric inequality (2.10) yields

$$
\nu_{2}\left(3^{m}+1\right)=\nu_{2}\left(3+(-1)^{m+1}\right)= \begin{cases}2 & \text { if } m \text { is odd } \tag{2.13}\\ 1 & \text { if } m \text { is even }\end{cases}
$$

The Stirling numbers $S(n, 3)$ are given by

$$
\begin{equation*}
2 S(n, 3)=3^{n-1}+1-2^{n} \tag{2.14}
\end{equation*}
$$

and $\nu_{2}\left(2^{n}\right)=n>2 \geq \nu_{2}\left(3^{n-1}+1\right)$. We conclude that

$$
\begin{equation*}
\nu_{2}(S(n, 3))=\nu_{2}\left(3^{n-1}+1-2^{n}\right)-1=\nu_{2}\left(3^{n-1}+1\right)-1 \tag{2.15}
\end{equation*}
$$

The result now follows from (2.13).
We now discuss the Stirling number of order 4.

Lemma 2.4. The Stirling numbers of order 4 are given by

$$
\begin{equation*}
S(n, 4)=\frac{1}{6}\left(4^{n-1}-3^{n}-3 \cdot 2^{n+1}-1\right) \tag{2.16}
\end{equation*}
$$

Moreover

$$
\nu_{2}(S(n, 4))= \begin{cases}1 & \text { if } n \quad \text { is odd } \tag{2.17}\\ 0 & \text { if } n \quad \text { is even }\end{cases}
$$

That is, $\nu_{2}(S(n, 4))=1-\nu_{2}(S(n, 3))$.
Proof. The expression for $S(n, 4)$ comes from (1.27). To establish the formula for $\nu_{2}(S(n, 4))$ we use the recurrence (1.29) in the case $k=4$:

$$
\begin{equation*}
S(n, 4)=S(n-1,3)+4 S(n-1,4) \tag{2.18}
\end{equation*}
$$

For n even, the value $S(n-1,3)$ is odd, so that $S(n, 4)$ is odd and $\nu_{2}(S(n, 4))=0$. For n odd, $S(n, 4)$ is even, since $S(n-1,3)$ is even. The recurrence (2.18) is now written as

$$
\begin{equation*}
\frac{1}{2} S(n, 4)=\frac{1}{2} S(n-1,3)+2 S(n-1,4) \tag{2.19}
\end{equation*}
$$

The value $\nu_{2}(S(n-1,3))=1$ shows that the right hand side is odd, yielding $\nu_{2}(S(n, 4))=1$.

3. The Stirling numbers of order 5

The elementary cases discussed in the previous section are the only ones for which the 2 -adic valuation $\nu_{2}(S(n, k))$ is easy to compute. The graph in Figure 12 gives $\nu_{2}(S(n, 5))$ and we now explore its properties.

The explicit formula (1.27) yields an expression for $S(n, 5)$.

Lemma 3.1. The Stirling numbers $S(n, 5)$ are given by

$$
\begin{equation*}
S(n, 5)=\frac{1}{24}\left(5^{n-1}-4^{n}+2 \cdot 3^{n}-2^{n+1}+1\right) \tag{3.1}
\end{equation*}
$$

Figure 12. The 2-adic valuation of $S(n, 5)$

We now discuss the valuation $\nu_{2}(S(n, 5))$. The 1-level consists of the two classes

$$
\begin{equation*}
1-\text { level : } \quad\left\{C_{1,0}, C_{1,1}\right\} \tag{3.2}
\end{equation*}
$$

These two classes split into $\left\{C_{2,0}, C_{2,1}, C_{2,2}, C_{2,3}\right\}$ modulo 4 . The parity of $S(n, 5)$ determines two of them.
Lemma 3.2. The Stirling numbers $S(n, 5)$ satisfy

$$
S(n, 5) \equiv\left\{\begin{array}{lll}
1 & \bmod 2 & \text { if } n \equiv 1, \text { or } 2 \bmod 4 \tag{3.3}\\
0 & \bmod 2 & \text { if } n \equiv 3, \text { or } 0 \bmod 4
\end{array}\right.
$$

Proof. The recurrence

$$
\begin{equation*}
S(n, 5)=S(n-1,4)+5 S(n-1,5) \tag{3.4}
\end{equation*}
$$

and the parity

$$
S(n, 4) \equiv\left\{\begin{array}{lll}
1 & \bmod 2 & \text { if } n \equiv 0 \bmod 2 \tag{3.5}\\
0 & \bmod 2 & \text { if } n \equiv 1 \bmod 2
\end{array}\right.
$$

give the result by induction.

Corollary 3.3. The Stirling numbers $S(n, 5)$ satisfy

$$
\begin{equation*}
\nu_{2}(S(4 n+1,5))=\nu_{2}(S(4 n+2,5))=0, \text { for all } n \in \mathbb{N} \tag{3.6}
\end{equation*}
$$

The corollary states that the classes $C_{2,1}$ and $C_{2,2}$ are constant, so the 2 level is

$$
\begin{equation*}
2-\text { level : } \quad\left\{C_{2,0}, C_{2,3}\right\} \tag{3.7}
\end{equation*}
$$

This confirms part of the main conjecture; here $m_{0}=3$ in view of $2^{2}<5 \leq 2^{3}$ and the first level where we find constant classes is $m_{0}-1=2$.

Remark. Corollary 3.3 reduces the discussion of $\nu_{2}(S(n, 5))$ to the indices $n \equiv$ 0 or $3 \bmod 4$. These two branches can be treated in parallel. Introduce the notation

$$
\begin{equation*}
q_{n}:=\nu_{2}(S(n, 5)) \tag{3.8}
\end{equation*}
$$

and consider the table of values

$$
\begin{equation*}
X:=\left\{q_{4 i}, q_{4 i+3}: i \geq 2\right\} \tag{3.9}
\end{equation*}
$$

This starts as

$$
\begin{equation*}
X=\{1,1,3,3,1,1,2,2,1,1, \boldsymbol{6}, \mathbf{7}, 1,1, \ldots\} \tag{3.10}
\end{equation*}
$$

and after a while it continues as

$$
\begin{equation*}
X=\{\ldots, 1,1,2,2,1,1, \mathbf{1 1}, \mathbf{6}, 1,1,2,2, \ldots\} \tag{3.11}
\end{equation*}
$$

We observe that $q_{4 i}=q_{4 i+3}$ for most indices.
Definition 3.4. The index i is called exceptional if $q_{4 i} \neq q_{4 i+3}$.
The first exceptional index is $i=7$ where $q_{28}=6 \neq q_{31}=7$. The list of exceptional indices continues as $\{7,39,71,103, \ldots\}$.
Conjecture 3.5. The set of exceptional indices is $\{32 j+7: j \geq 1\}$.
We now consider the class

$$
\begin{equation*}
C_{2,0}:=\left\{q_{4 i}=\nu_{2}(S(4 i), 5): i \geq 2\right\} \tag{3.12}
\end{equation*}
$$

where we have omitted the first term $S(4,5)=0$. The class $C_{2,0}$ starts as

$$
\begin{equation*}
C_{2,0}=\{1,3,1,2,1,6,1,2,1,3,1,2,1,4,1,2,1,3,1,2, \ldots\} \tag{3.13}
\end{equation*}
$$

and it splits according to the parity of the index i into

$$
\begin{equation*}
C_{3,4}=\left\{q_{8 i+4}: i \geq 1\right\} \text { and } C_{3,0}=\left\{q_{8 i}: i \geq 1\right\} \tag{3.14}
\end{equation*}
$$

The data suggests that $C_{3,0}$ is constant. This is easy to check.
Proposition 3.6. The Stirling numbers of order 5 satisfy

$$
\begin{equation*}
\nu_{2}(S(8 i, 5))=1, \text { for all } i \geq 1 \tag{3.15}
\end{equation*}
$$

Proof. We analyze the identity

$$
\begin{equation*}
24 S(8 i, 5)=5^{8 i-1}-4^{8 i}+2 \cdot 3^{8 i}-2^{8 i+1}+1 \tag{3.16}
\end{equation*}
$$

modulo 32 . Using $5^{8} \equiv 1$ and $5^{7} \equiv 13$ we obtain $5^{8 i-1} \equiv 13$. Also $4^{8 i} \equiv 2^{8 i+1} \bmod$ 0 . Finally $3^{8 i} \equiv 81^{2 i} \equiv 17^{2 i} \equiv 1$. Therefore

$$
\begin{equation*}
5^{8 i-1}-4^{8 i}+2 \cdot 3^{8 i}-2^{8 i+1}+1 \equiv 16 \bmod 32 \tag{3.17}
\end{equation*}
$$

We obtain that $24 S(8 i, 5)=32 t+16$ for some $t \in \mathbb{N}$ and this yields $3 S(8 i, 5)=$ $2(2 t+1)$. Therefore $\nu_{2}(S(8 i, 5))=1$.

We now consider the class $C_{3,4}$.

Proposition 3.7. The Stirling numbers of order 5 satisfy

$$
\begin{equation*}
\nu_{2}(S(8 i+4,5)) \geq 2, \text { for all } i \geq 1 \tag{3.18}
\end{equation*}
$$

Proof. We analyze the identity

$$
\begin{equation*}
24 S(8 i+4,5)=5^{8 i+3}-4^{8 i+4}+2 \cdot 3^{8 i+4}-2^{8 i+5}+1 \tag{3.19}
\end{equation*}
$$

modulo 32 . Using $5^{8} \equiv 1,5^{3} \equiv 29,3^{8} \equiv 1,3^{4} \equiv 17$ and $2^{4} \equiv 16$ modulo 32 we obtain

$$
\begin{equation*}
24 S(8 i+4,5) \equiv 0 \bmod 32 \tag{3.20}
\end{equation*}
$$

Therefore $24 S(8 i+4,5)=32 t$ for some $t \in \mathbb{N}$ and this yields $\nu_{2}(S(8 i+4,5) \geq 2$.

Note. Lengyel [9] established that

$$
\begin{equation*}
\nu_{2}(k!S(n, k))=k-1, \tag{3.21}
\end{equation*}
$$

for $n=a 2^{q}, a$ is odd, and $q \geq k-2$. In the special case $k=5$ this yields $\nu_{2}(S(n, 5))=1$ for $n=a 2^{q}$ and $q \geq 3$. These values of n have the form $n=8 a \cdot 2^{q-3}$, so this is included in Proposition 3.6.

Remark. A similar argument yields

$$
\begin{equation*}
\nu_{2}(S(8 i+3,5))=1 \text { and } \nu_{2}(S(8 i+7,5)) \geq 2 \tag{3.22}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
3-\text { level : } \quad\left\{C_{3,4}, C_{3,7}\right\} . \tag{3.23}
\end{equation*}
$$

This confirms the main conjecture: each of the classes of the 2-level produces a constant class and a second one in the 3-level.

We now consider the class $C_{3,4}$ and its splitting as $C_{4,4}$ and $C_{4,12}$. The data for $C_{3,4}$ starts as

$$
\begin{equation*}
C_{3,4}=\{3,2,6,2,3,2,4,2,3,2,5,2,3,2,4,2,3,2,11,2,3,2, \ldots\} \tag{3.24}
\end{equation*}
$$

This suggests that the values with even index are all 2 . This can be verified.
Proposition 3.8. The Stirling numbers of order 5 satisfy

$$
\begin{equation*}
\nu_{2}(S(16 i+4,5))=2, \text { for all } \geq 1 \tag{3.25}
\end{equation*}
$$

Proof. We analyze the identity

$$
\begin{equation*}
24 S(16 i+4,5)=5^{16 i+3}-4^{16 i+4}+2 \cdot 3^{16 i+4}-2^{16 i+5}+1 \tag{3.26}
\end{equation*}
$$

modulo 64. Using $5^{16} \equiv 1,5^{3} \equiv 61,3^{16} \equiv 1$ and $3^{4} \equiv 17$ we obtain

$$
\begin{equation*}
5^{16 i+3}-4^{16 i+4}+2 \cdot 3^{16 i+4}-2^{16 i+5}+1 \equiv 32 \bmod 64 \tag{3.27}
\end{equation*}
$$

Therefore $24 S(16 i+4,5)=64 t+32$ for some $t \in \mathbb{N}$. This gives $3 S(16 i+4,5)=$ $4(2 t+1)$ and it follows that $\nu_{2}(S(16 i+4,5))=2$.

Note. A similar argument shows that $\nu_{2}(S(16 i+12,5)) \geq 3$ and also $\nu_{2}(S(16 i+$ $7,5))=2$ and $\nu_{2}(S(16 i+15,5)) \geq 3$. Therefore the 4 -level is $\left\{C_{4,12}, C_{4,15}\right\}$.

This splitting process of the classes can be continued and, according to our main conjecture, the number of elements in the m-level is always constant. To prove the statement similar to Propositions 3.6 and 3.8 requires us to analyze the congruence

$$
\begin{equation*}
24 S\left(2^{m} i+j, 5\right) \equiv 5^{2^{m} i+j-1}-4^{2^{m} i+j}+2 \cdot 3^{2^{m} i+j}-2^{2^{m} i+j+1}+1 \bmod 2^{m+2} \tag{3.28}
\end{equation*}
$$

This can be done for a specific choice of j, those giving the indices at the m-level. At the moment we cannot predict which values of j will appear at the m-level. We present a proof of this conjecture, for the special case $k=5$, in the next section.

Problem. Is there a combinatorial mechanism that enables us to make such a binary choice for each m-level split class?

Lundell [11] studied the Stirling-like numbers

$$
\begin{equation*}
T_{p}(n, k)=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n} \tag{3.29}
\end{equation*}
$$

where the prime p is fixed and the index j is omitted in the sum if it divisible by p. Clarke [5] conjectured that

$$
\begin{equation*}
\nu_{p}(k!S(n, k))=\nu_{p}(T(n, k)) \tag{3.30}
\end{equation*}
$$

From this conjecture he derives an expression for $\nu_{2}(S(n, 5))$ in terms of the zeros of the form $f_{0,5}(x)=5+10 \cdot 3^{x}+5^{x}$ in the ring of 2 -adic integers \mathbb{Z}_{2}.

Theorem 3.9. Let u_{0} and u_{1} be the 2 -adic zeros of the function $f_{0,5}$. Then, under the assumption that conjecture (3.30) holds, we have

$$
\nu_{2}(S(n, 5))= \begin{cases}-1+\nu_{2}\left(n-u_{0}\right) & \text { if } n \text { is even } \tag{3.31}\\ -1+\nu_{2}\left(n-u_{1}\right) & \text { if } n \text { is odd }\end{cases}
$$

Here u_{0} is the unique zero of $f_{0,5}$ that satisfies $u_{0} \in 2 \mathbb{Z}_{2}$ and u_{1} is the other zero of $f_{0,5}$ and satisfies $u_{1} \in 1+2 \mathbb{Z}_{2}$.

Clarke also obtained in [5] similar expressions for $\nu_{2}(S(n, 6))$ and $\nu_{2}(S(n, 7))$ in terms of zeros of the functions

$$
f_{0,6}=-6-20 \cdot 3^{x}-6 \cdot 5^{x} \text { and } f_{0,7}=7+35 \cdot 3^{x}+21 \cdot 5^{x}+7^{x}
$$

4. Proof of the main conjecture for $k=5$

The goal of this section is to prove the main conjecture in the case $k=5$. The parameter m_{0} is 3 in view of $2^{2}<5 \leq 2^{3}$. In the previous section we have verified that $m_{0}-1=2$ is the first level for constant classes. We now prove this splitting of classes.

Theorem 4.1. Assume $m \geq m_{0}$. Then the m-level consists of exactly two split classes: $C_{m, j}$ and $C_{m, j+2^{m-1}}$. They satisfy $\nu_{2}\left(C_{m, j}\right)>m-3$ and $\nu_{2}\left(C_{m, j+2^{m-1}}\right)>$ $m-3$. Then exactly one, call it C^{1}, satisfies $\nu_{2}\left(C^{1}\right)=\{m-2\}$ and the other one, call it C^{2}, satisfies $\nu_{2}\left(C^{2}\right)>m-2$.

The proof of this theorem requires several elementary results of 2-adic valuations.
Lemma 4.2. For $m \in \mathbb{N}$: $\nu_{2}\left(5^{2^{m}}-1\right)=m+2$.
Proof. Start at $m=1$ with $\nu_{2}(24)=3$. The inductive step uses

$$
5^{2^{m+1}}-1=\left(5^{2^{m}}-1\right) \cdot\left(5^{2^{m}}+1\right)
$$

Now $5^{k}+1 \equiv 2 \bmod 4$ so that $5^{2^{m}}+1=2 \alpha_{1}$ with α_{1} odd. Thus

$$
\nu_{2}\left(5^{2^{m+1}}-1\right)=\nu_{2}\left(5^{2^{m}}-1\right)+\nu_{2}\left(5^{2^{m}}+1\right)=(m+2)+1=m+3
$$

The same type of argument produces the next lemma.
Lemma 4.3. For $m \in \mathbb{N}$: $\nu_{2}\left(3^{2^{m}}-1\right)=m+2$.

Lemma 4.4. For $m \in \mathbb{N}: \nu_{2}\left(5^{2^{m}}-3^{2^{m}}\right)=m+3$.

Proof. The inductive step uses

$$
5^{2^{m+1}}-3^{2^{m+1}}=\left(5^{2^{m}}-3^{2^{m}}\right) \times\left(\left(5^{2^{m}}-1\right)+\left(3^{2^{m}}+1\right)\right)
$$

Therefore $\nu_{2}\left(5^{2^{m}}-1\right)=m+2$ and $3^{2^{m}} \equiv 1 \bmod 4$, thus $\nu_{2}\left(3^{2^{m}}+1\right)=1$. We conclude that

$$
\nu_{2}\left(\left(5^{2^{m}}-1\right)+\left(3^{2^{m}}+1\right)\right)=\operatorname{Min}\{m+2,1\}=1
$$

We obtain

$$
\begin{equation*}
\nu_{2}\left(5^{2^{m+1}}-3^{2^{m+1}}\right)=m+4, \tag{4.1}
\end{equation*}
$$

and this concludes the inductive step.
The recurrence (1.29) for the Stirling numbers $S(n, 5)$ is

$$
\begin{equation*}
S(n, 5)=5 S(n-1,5)+S(n-1,4) \tag{4.2}
\end{equation*}
$$

Iterating this result yields the next lemma.
Lemma 4.5. Let $t \in \mathbb{N}$. Then

$$
\begin{equation*}
S(n, 5)-5^{t} S(n-t, 5)=\sum_{j=0}^{t-1} 5^{j} S(n-j-1,4) \tag{4.3}
\end{equation*}
$$

Proof of theorem 4.1. We have already checked the conjecture for the 2-level. The inductive hypothesis states that the $(m-1)$-level survivor has the form

$$
\begin{equation*}
C_{m, k}=\left\{\nu_{2}\left(S\left(2^{m} n+k, 5\right)\right): n \geq 1\right\} \tag{4.4}
\end{equation*}
$$

and that $\nu_{2}\left(S\left(2^{m} n+k, 5\right)\right)>m-2$. At the next level this class splits into the two classes

$$
\begin{aligned}
C_{m+1, k} & =\left\{\nu_{2}\left(S\left(2^{m+1} n+k, 5\right)\right): n \geq 1\right\} \quad \text { and } \\
C_{m+1, k+2^{m}} & =\left\{\nu_{2}\left(S\left(2^{m+1} n+k+2^{m}, 5\right)\right): n \geq 1\right\}
\end{aligned}
$$

and every element of each of these two classes is greater or equal than $m-1$.
We now prove that one of these classes reduces to the singleton $\{m-1\}$ and that every element in the other class is strictly greater than $m-1$.

The first step is to use Lemma 4.5 to compare the values of $S\left(2^{m+1} n+k, 5\right)$ and $S\left(2^{m+1} n+k+2^{m}, 5\right)$. Define

$$
\begin{equation*}
M=2^{m}-1 \text { and } N=2^{m+1} n+k \tag{4.5}
\end{equation*}
$$

then we have

$$
\begin{equation*}
S\left(2^{m+1} n+k+2^{m}, 5\right)-5^{2^{m}} S\left(2^{m+1} n+k, 5\right)=\sum_{j=0}^{M} 5^{M-j} S(N+j, 4) \tag{4.6}
\end{equation*}
$$

Proposition 4.6. With the notation as above,

$$
\begin{equation*}
\nu_{2}\left(\sum_{j=0}^{M} 5^{M-j} S(N+j, 4)\right)=m-1 \tag{4.7}
\end{equation*}
$$

Proof. The explicit formula (1.27) yields

$$
\begin{equation*}
6 S(n, 4)=4^{n-1}+3 \cdot 2^{n-1}-3^{n}-1 \tag{4.8}
\end{equation*}
$$

Thus

$$
\begin{aligned}
6 \sum_{j=0}^{M} 5^{M-j} S(N+j, 4)= & 4^{N-1}\left(5^{M+1}-4^{M+1}\right)+2^{N-1}\left(5^{M+1}-2^{M+1}\right) \\
& -3^{N} \times \frac{1}{2}\left(5^{M+1}-3^{M+1}\right)-\frac{1}{4}\left(5^{M+1}-1\right)
\end{aligned}
$$

The results in Lemmas 4.2, 4.3 and 4.4 yield

$$
\begin{equation*}
6 \sum_{j=0}^{M} 5^{M-j} S(N+j, 4)=4^{N-1} \alpha_{1}+2^{N-1} \alpha_{2}-3^{N} \cdot 2^{m+2} \alpha_{3}-2^{m} \alpha_{4} \tag{4.9}
\end{equation*}
$$

with α_{j} odd integers. Write this as

$$
6 \sum_{j=0}^{M} 5^{M-j} S(N+j, 4)=2^{N-1}\left(2^{N-1} \alpha_{1}+\alpha_{2}\right)-2^{m}\left(4 \alpha_{3} 3^{N}+1\right) \equiv T_{1}+T_{2}
$$

Then $\nu_{2}\left(T_{1}\right)=N-1>m=\nu_{2}\left(T_{2}\right)$ and we obtain

$$
\begin{equation*}
\nu_{2}\left(\sum_{j=0}^{M} 5^{M-j} S(N+j, 4)\right)=m-1 \tag{4.10}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
S\left(2^{m+1} n+k+2^{m}, 5\right)-5^{2^{m}} S\left(2^{m+1} n+k, 5\right)=2^{m-1} \alpha_{5} \tag{4.11}
\end{equation*}
$$

with α_{5} odd. Define

$$
\begin{equation*}
X:=2^{-m+1} S\left(2^{m+1} n+k+2^{m}, 5\right) \text { and } Y:=2^{-m+1} S\left(2^{m+1} n+k, 5\right) \tag{4.12}
\end{equation*}
$$

Then X and Y are integers and $X-Y \equiv 1 \bmod 2$, so that they have opposite parity. If X is even and Y is odd, we obtain

$$
\begin{equation*}
\nu_{2}\left(S\left(2^{m+1} n+k+2^{m}, 5\right)\right)>m-1 \text { and } \nu_{2}\left(S\left(2^{m+1} n+k, 5\right)\right)=m-1 \tag{4.13}
\end{equation*}
$$

The case X odd and Y even is similar. This completes the proof.

5. Some approximations

In this section we present some approximations to the function $\nu_{2}(S(n, 5))$. These approximations were derived empirically and they support our belief that 2 -adic valuations of Stirling numbers can be well approximated by simple integer combinations of the most basic 2-adic valuations of the integers.

For each prime p, define

$$
\begin{equation*}
\lambda_{p}(m)=\frac{1}{2}\left(1-(-1)^{m \bmod p}\right) \tag{5.1}
\end{equation*}
$$

First approximation. Define

$$
\begin{equation*}
f_{1}(m):=\left\lfloor\frac{m+1}{2}\right\rfloor+112 \lambda_{2}(m)+50 \lambda_{2}(m+1) \tag{5.2}
\end{equation*}
$$

Then $\nu_{2}(S(m, 5))$ and $\nu_{2}\left(f_{1}(m)\right)$ agree for most values. The first time they differ is at $m=156$ where

$$
\nu_{2}(S(156,5))-\nu_{2}\left(f_{1}(156)\right)=4
$$

The first few indices for which $\nu_{2}(S(m, 5)) \neq \nu_{2}\left(f_{1}(m)\right)$ are $\{156,287,412,668,799, \ldots\}$.
Conjecture 5.1. Define

$$
\begin{equation*}
x_{1}(m)=156+125\left\lfloor\frac{4 m}{3}\right\rfloor+6\left\lfloor\frac{2 m+1}{3}\right\rfloor \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1}=\left\{x_{1}(m): m \geq 0\right\} . \tag{5.4}
\end{equation*}
$$

Then $\nu_{2}(S(m, 5))=\nu_{2}\left(f_{1}(m)\right)$ unless $m \in I_{1}$.
The parity of the exceptions in I_{1} is easy to establish: every third element is odd and the even indices of I_{1} are on the arithmetic progression $256 m+156$.

Second approximation. We now describe a new approximation to the error

$$
\begin{equation*}
\operatorname{Err}_{2}(m, 5):=\nu_{2}(S(m, 5))-\nu_{2}\left(f_{1}(m)\right) \tag{5.5}
\end{equation*}
$$

Define

$$
\begin{aligned}
m_{3}(m) & :=(m+2) \bmod 3 \\
\alpha_{m} & :=\lambda_{3}(m+2)\left(1+\lambda_{3}(m)\right)+\lambda_{2}(m+1) \lambda_{3}(m)
\end{aligned}
$$

Now define

$$
\begin{equation*}
f_{2}(m)=\binom{2 m_{3}}{m_{3}}\left\lfloor\frac{m+2}{3}\right\rfloor+208 \lambda_{3}(m+1)+27 \lambda_{2}(m) \lambda_{3}(m) \tag{5.6}
\end{equation*}
$$

The next conjecture improves the prediction of Conjecture 5.1.

Conjecture 5.2. Define

$$
\begin{equation*}
\operatorname{Err}_{2}\left(x_{1}(m)\right):=\nu_{2}\left(S\left(x_{1}(m), 5\right)-(-1)^{\alpha_{m}} \nu_{2}\left(f_{2}(m)\right),\right. \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}(m)=109+107\left\lfloor\frac{4 m+2}{3}\right\rfloor+85\left\lfloor\frac{4 m+1}{3}\right\rfloor . \tag{5.8}
\end{equation*}
$$

Finally, let $I_{2}=\left\{x_{2}(m): m \geq 0\right\}$. Then $\operatorname{Err}_{2}(m)=0$ unless $m \in I_{2}$.
There is single class per level that we write as

$$
\begin{equation*}
C_{m, j}=\left\{q_{2^{m} i+j}: i \in \mathbb{N}\right\} \tag{5.9}
\end{equation*}
$$

where $j=j(m)$ is the index that corresponds to the non-constant class at the m-level. The first few examples are listed below.

$$
\begin{aligned}
C_{2,4} & =\left\{q_{4 i+4}: i \in \mathbb{N}\right\} \\
C_{3,4} & =\left\{q_{8 i+4}: i \in \mathbb{N}\right\} \\
C_{4,12} & =\left\{q_{16 i-4}: i \in \mathbb{N}\right\} \\
C_{5,28} & =\left\{q_{32 i-4}: i \in \mathbb{N}\right\} \\
C_{6,28} & =\left\{q_{64 i-36}: i \in \mathbb{N}\right\} \\
C_{7,156} & =\left\{q_{128 i-100}: i \in \mathbb{N}\right\} \\
C_{8,156} & =\left\{q_{256 i-100}: i \in \mathbb{N}\right\} \\
C_{9,156} & =\left\{q_{512 i-356}: i \in \mathbb{N}\right\} \\
C_{10,156} & =\left\{q_{1024 i-868}: i \in \mathbb{N}\right\}
\end{aligned}
$$

We have observed a connection between the indices $j(m)$ and the set of exceptional indices I_{1} in (5.4).

Conjecture 5.3. Construct a list of numbers $\left\{c_{i}: i \in \mathbb{N}\right\}$ according to the following rules. Let $c_{1}=8$ (the first index in the class $C_{2,4}$), and then define c_{j} as the first value on $C_{m, j}$ that is strictly bigger than c_{j-1}. The set C begins as

$$
\begin{equation*}
C=\{8,12,28,60,92,156,412,668,1180, \ldots\} \tag{5.10}
\end{equation*}
$$

Then, starting at 156 , the number $c_{i} \in I_{1}$.

6. A sample of pictures

In this section we present data that illustrate the wide variety of behavior for the 2-adic valuation of Stirling numbers $S(n, k)$.

Figure 13. The data for $S(n, 80)$

Figure 14. The data for $S(n, 126)$

Figure 15. The data for $S(n, 146)$

Figure 16. The data for $S(n, 195)$

Figure 17. The data for $S(n, 252)$

7. Conclusions

We have presented a conjecture that describes the 2-adic valuation of the Stirling numbers $S(n, k)$. This conjecture is established for $k=5$.

Figure 18. The data for $S(n, 260)$

Figure 19. The data for $S(n, 279)$

Figure 20. The data for $S(n, 324)$

Acknowledgements. The second author is partially funded by the AARMS Director's Postdoctoral Fellowship. The work of the last author was partially funded by NSF-DMS 0070567.

Figure 21. The data for $S(n, 465)$

Figure 22. The data for $S(n, 510)$

Figure 23. The data for $S(n, 512)$

References

[1] T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of a sequence arising from a rational integral. To appear in Jour. Comb. A.
[2] G. Boros and V. Moll. An integral hidden in Gradshteyn and Ryzhik. Jour. Comp. Applied Math., 106:361-368, 1999.
[3] G. Boros and V. Moll. Irresistible Integrals. Cambridge University Press, New York, 1st edition, 2004.
[4] G. Boros, V. Moll, and J. Shallit. The 2-adic valuation of the coefficients of a polynomial. Scientia, 7:37-50, 2001.
[5] F. Clarke. Hensel's lemma and the divisibility by primes of Stirling-like numbers. J. Number Theory, 52:69-84, 1995.
[6] H. Cohen. On the 2-adic valuation of the truncated polylogarithmic series. Fib. Quart., 37:117-121, 1999.
[7] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison Wesley, Boston, 2nd edition, 1994.
[8] A. M. Legendre. Theorie des Nombres. Firmin Didot Freres, Paris, 1830.
[9] T. Lengyel. On the divisiblity by 2 of the Stirling numbers of the second kind. Fib. Quart., 32:194-201, 1994.
[10] J. Little. On the zeroes of two families of polynomials arising from certain rational integrals. Rocky Mountain Journal, 35:1205-1216, 2005.
[11] A. Lundell. A divisiblity property for Stirling numbers. J. Number Theory, 10:35-54, 1978.
[12] S. De Wannemacker. On the 2-adic orders of Stirling numbers of the second kind. INTEGERS, 5(1):A-21, 2005.
[13] S. De Wannemacker. Annihilating polynomials for quadratic forms and Stirling numbers of the second kind. Math. Nachrichten, 2006.

Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: tamdeberhan@math.tulane.edu
Department of Mathematics and Statistics, Dalhousie University, Nova Scotia, Canada B3H 3J5

E-mail address: dmanna@mathstat.dal.ca
Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: vhm@math.tulane.edu

[^0]: Date: November 12, 2007.
 1991 Mathematics Subject Classification. Primary 11B50, Secondary 05A15.
 Key words and phrases. valuations, Stirling numbers.

[^1]: ${ }^{1}$ Cohen uses the notation $s_{k}(n)$, employed here in a different context.

