
THE EVALUATION OF TORNHEIM DOUBLE SUMS. PART 2

OLIVIER ESPINOSA AND VICTOR H. MOLL

Abstract. We provide an explicit formula for the Tornheim double series
T (a, 0, c) in terms of an integral involving the Hurwitz zeta function. For
integer values of the parameters, a = m, c = n, we show that in the most
interesting case of even weight N := m + n the Tornheim sum T (m, 0, n) can
be expressed in terms of zeta values and the family of integrals

Z

1

0

log Γ(q)Bk(q)Cll+1(2πq) dq,

with k + l = N , where Bk(q) is a Bernoulli polynomial and Cll+1(x) is a
Clausen function.

1. Introduction

The function

(1.1) T (a, b, c) :=
∞
∑

r=1

∞
∑

s=1

1

ra sb (r + s)c
,

was introduced by Tornheim in [11]. For a, b, c ∈ R, the series is convergent if

(1.2) a+ c > 1, b+ c > 1, and a+ b+ c > 2.

In the case (a, b, c) = (m, k, n), with m, k, n ∈ N ∪ {0}, we define the weight of
the Tornheim sum T (m, k, n) as the positive integer N = m+ k + n.

We have previously derived [7] an analytic expression for the general Tornheim
sum T (a, b, c) in terms of integrals involving the Hurwitz zeta function ζ(z, q),
defined as the meromorphic extension to the whole complex z-plane of the series

(1.3) ζ(z, q) :=

∞
∑

n=0

1

(n+ q)z
,

which is defined for Re z > 1 and q 6= 0, −1, −2, · · · . Our expression for T (a, b, c),
recalled later in Theorem 3.2, is valid for a, b, c ∈ R − N ∪ {0}, provided the con-
vergence conditions (1.2) are satisfied. Using this result and a limiting procedure,
we derived similar formulas for T (m, k, n), with m, k, n ∈ N.

In this paper we derive a formula for the Tornheim sum T (a, 0, c), valid for
a, c ∈ R − N with a > 2 and c > 2. A limiting procedure will then provide an
analytic expression for the sums T (m, 0, n), with m, n ∈ N − {1}.
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These expressions for the sums T (m, 0, n) are of practical interest. In fact, Huard
et al [10] established the relation
(1.4)

T (m, k, n) =

m
∑

i=1

(

m+ k − i− 1

m− i

)

T (i, 0, N−i)+
k
∑

i=1

(

m+ k − i− 1

k − i

)

T (i, 0, N−i),

for the Tornheim sum of weight N = m+ k + n. Therefore, it suffices to consider
sums of the form T (m, 0, n). The convergence of the series requires n > 1 and
m+ n > 2, thus the sum T (m, 0, 1) diverges.

Introduce the spaces

(1.5) ZN := {T (m, k, n) : m, k, n ∈ N ∪ {0} with n+m ≥ 2, k + n ≥ 2

and N = m+ k + n ≥ 3},
and

(1.6) Z0
N := {T (m, 0, n) ∈ ZN}.

The following result is contained in formula (1.4):

Proposition 1.1. Every sum in ZN is a linear combination of terms in Z0
N with

coefficients in N.

Note 1.2. The sums T (m, 0, n) appearing in (1.4) can be written as

T (m, 0, n) =
∞
∑

r=1

∞
∑

s=1

1

rm (r + s)n
(1.7)

=
∑

r1>r2

1

rn
1 r

m
2

.

Therefore T (m, 0, n) is a special case of the multiple zeta value (= MZV)

(1.8) ζ(s1, s2, . . . , sk) =
∑

r1>r2>···>rk>0

k
∏

j=1

r
−sj

j ,

namely1,

(1.9) T (m, 0, n) = ζ(n,m).

There is a vast literature on MZV and the reader if referred to Chapter 3 of [2] for
an introduction to this topic.

Note 1.3. In the case of odd weight, [10] gives the relation

(1.10) T (m, 0, n) = (−1)m

⌊n−1

2
⌋

∑

j=0

(

m+ n− 2j − 1

m− 1

)

ζ(2j)ζ(m + n− 2j)

+ (−1)m

⌊m
2
⌋

∑

j=0

(

m+ n− 2j − 1

n− 1

)

ζ(2j)ζ(m + n− 2j) − 1
2ζ(m+ n),

1The double zeta function appearing here should not be confused with the Hurwitz zeta func-
tion in (1.3).
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valid for m ≥ 1. Here

(1.11) ζ(s) =

∞
∑

n=1

1

ns
,

is the classical Riemann zeta function. This function has an analytic extension to
C − {1}, the point s = 1 being a simple pole. Recalling that ζ(0) = −1/2, the
previous result can also be restated in the following terms:

Proposition 1.4. Assume the weight N is odd. Then the sums in Z0
N can be eval-

uated as linear combination of the products ζ(2j)ζ(N−2j), j = max
{

⌊m
2 ⌋, ⌊n−1

2 ⌋
}

,
with integer coefficients.

The idea of [10] is to produce a linear system of equations for the unknowns
Ti := T (i, 0, N − i), for 1 ≤ i ≤ N − 2. This system has full rank in the case N
odd and its solution yields (1.10). Their methods also produce analytic expressions
for Tornheim sums of small even weight, but they fail in general. In particular, for
weight N ≥ 8, the system of equation mentioned above is not of full rank. Section
6 contains a discussion of this issue.

For example, the class Z0
4 contains the sums

(1.12) T (1, 0, 3) =
1

4
ζ(4) and T (2, 0, 2) =

3

4
ζ(4),

and in the space Z0
6 we find the four sums

T (1, 0, 5) = −1

2
ζ(3)2 +

3

4
ζ(6),

T (2, 0, 4) = ζ2(3) − 4

3
ζ(6),

T (3, 0, 3) =
1

2
ζ(3)2 − 1

2
ζ(6),

T (4, 0, 2) = −ζ2(3) +
25

12
ζ(6).(1.13)

Huard et al. [10] also gave the relation

(1.14) 5T (2, 0, 6) + 2T (3, 0, 5) = 10ζ(3)ζ(5) − 49

4
ζ(8),

for the case of weight 8, but they are unable to evaluate the individual terms
T (2, 0, 6) and T (3, 0, 5). The question of an analytic expression these sums remains
open.

In this paper we give particular consideration to the Tornheim sums T (m, 0, n)
of arbitrary even weight N = m + n. For each even N , only two of these sums
have known closed expressions in terms of zeta values, namely T (1, 0, N − 1) and
T (N/2, 0, N/2).

Tornheim established the result

(1.15) T (0, 0, N) = ζ(N − 1) − ζ(N), N ≥ 3,

which appears as Theorem 5, page 308 of Tornheim [11], and the companion formula

(1.16) T (1, 0, N − 1) =
1

2

[

(N − 1)ζ(N) −
N−2
∑

i=2

ζ(i)ζ(N − i)

]

, N ≥ 3,

where N = n+ 1, can also be found in [11].
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The main result of this paper is an analytic expression for the Tornheim sums
T (m, 0, n) of even weight, with m, n ≥ 2, in terms of a family of integrals involving
the log-gamma function log Γ(q), the Bernoulli polynomials Bk(q), given by the
generating function

(1.17)
eqt

et − 1
=

∞
∑

k=0

Bk(q)
tk−1

k!
,

and the Clausen functions Cll(x), defined as

Cl2n(x) :=
∞
∑

k=1

sin kx

k2n
, n ∈ N,(1.18)

Cl2n+1(x) :=

∞
∑

k=1

cos kx

k2n+1
, n ∈ N ∪ {0}.(1.19)

For example, we obtain

(1.20) T (6, 0, 2) = 7
6ζ(8) − 6ζ(3)ζ(5) − Y ∗

2,6,

with

Y ∗
2,6 :=

8

3
π6 (X0,6 − 2X1,5 +X2,4) − 6ζ(7) log 2π,

and where

(1.21) Xk,l := (−1)⌊l/2⌋ l!

(2π)l

∫ 1

0

log Γ(q)Bk(q)Cll+1(2πq) dq.

In the general case, we show that all the Tornheim sums of even weight N can
be expressed in terms of values of the Riemann zeta function and integrals of the
form

(1.22) Y ∗
m,N−m :=

2(2π)N−2

m!(N −m− 2)!

m
∑

j=0

(−1)j

(

m

j

)

Xj,N−2−j

+ (−1)
N
2 −1

(

N − 2

m− 1

)

ζ(N − 1) log 2π,

where N is the weight and m is even in the range 2 ≤ m ≤ 2
⌊

N−2
6

⌋

.

The rest of the paper is organized as follows. Section 2 contains all the main
theorems we will prove in the subsequent sections. Section 3 derives the expression
for the Tornheim sum T (a, 0, c) in terms of an integral involving the Hurwitz zeta
function, starting from a more general result derived in [7]. Section 4 computes
the limit of T (a, 0, c) as a → m and c → n, with m,n ∈ N − {1}. In Section
5 we consider the particular case of Tornheim sums of even weight N and show
that they can be expressed in terms of zeta values and the family of integrals Xk,l,
defined above, with k+ l = N . The explicit evaluation of this last family of definite
integrals remains a challenging problem. Finally, in Section 6 we give a systematic
list of evaluations for small even weight.
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2. Main results

We start by introducing some auxiliary special functions that play a role in our
derivations. First, we have the Bernoulli functions

(2.1) Ak(q) = kζ′(1 − k, q), k ∈ N,

introduced in [5, 6], and the kernel

(2.2) K(q) = log sinπq.

The first result is established in Section 3.

Theorem 2.1. Let a, c ∈ R − N with a, c > 2. Then

(2.3) T (a, 0, c) = 4λ(a)λ(c) sin
(πc

2

)

×
[

sin
(πa

2

)

{

ζ(1 − a)ζ(1 − c) − ζ(1 − a− c)B(a, c)

1 − tan
(

πa
2

)

tan
(

πc
2

)

}

− 1

2
cos
(πa

2

)

∫ 1

0

[ζ(1 − a, q) − ζ(1 − a, 1 − q)] ζ(1 − c, q) cotπq dq

]

,

where

(2.4) λ(z) :=
Γ(1 − z)

(2π)1−z
=

π

(2π)1−z Γ(z) sinπz
.

The explicit expression (2.3) for T (a, 0, c) allows us to consider the limit a →
m, c→ n, for m,n ∈ N−{1}. The value of T (m, 0, n) is found to be given in terms
of the basic integrals:

IBB(k, l) :=

∫ 1

0

Bk(q)Bl(q)K(q) dq,(2.5)

IAB(k, l) :=
1

π

∫ 1

0

Ak(q)Bl(q)K(q) dq,

IAA(k, l) :=
1

π2

∫ 1

0

Ak(q)Al(q)K(q) dq,

JAA(k, l) :=
1

π2

∫ 1

0

Ak(q)Al(1 − q)K(q) dq.

where Bk(q) is a Bernoulli polynomial and Ak(q) and K(q) are the functions intro-
duced in (2.1) and (2.2), respectively.

Theorem 2.2. Let m ≥ 2, n ≥ 2 ∈ N. The Tornheim sum T (m, 0, n) is given by

(2.6) T (m, 0, n) = ζ(m)ζ(n) − 1
2ζ(m+ n) + (−1)⌊

m+n
2

⌋ (2π)m+n−1

m!n!
ℓ2(m,n),

where:

(a) m and n even:

ℓ2(m,n) = mIAB(m− 1, n) + nIAB(m,n− 1),(2.7)
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(b) m and n odd:

ℓ2(m,n) = mIAB(n,m− 1) + nIAB(n− 1,m).(2.8)

(c) m odd and n even:

ℓ2(m,n) =
1

2
(mIBB(m− 1, n) + nIBB(m,n− 1)) ,(2.9)

(d) m even and n odd:

ℓ2(m,n) = −mIAA(m− 1, n) − nIAA(m,n− 1)(2.10)

−mJAA(m− 1, n) + nJAA(m,n− 1),

The proof of this theorem is the subject of Section 4.

In the case of even weight m + n = N , the Tornheim sum T (m, 0, n) is given
in terms of the single family of integrals IAB(k, l). The next theorem shows that
these can be expressed in terms of the family of integrals

(2.11) Xk,l := (−1)⌊l/2⌋ l!

(2π)l

∫ 1

0

log Γ(q)Bk(q)Cll+1(2πq) dq.

Theorem 2.3. Assume m, n ∈ N satisfy m, n ≥ 2 and that the weight N := m+n
is even. Define

(2.12) T1(m,n) := ζ(m)ζ(n) − 1

2
ζ(N)

and

(2.13) T2(m,n) := −
N/2−2
∑

k=1

(

N − 2 − 2k

m− 1

)

ζ(2k+1)ζ(N−1−2k)+(−1)N/2−1Y ∗
m,n,

where

Y ∗
m,n :=

2(2π)N−2

m!(N −m− 2)!

m
∑

j=0

(−1)j

(

m

j

)

Xj,N−2−j

+ (−1)
N
2 −1

(

N − 2

m− 1

)

ζ(N − 1) log 2π

Y ∗
m,n := Ym,n + (−1)

N
2 −1

(

N − 2

m− 1

)

ζ(N − 1) log 2π.

(2.14)

Then T (m, 0, n) can be written as

(2.15) T (m, 0, n) =

{

T1(m,n) + T2(m,n), m and n odd,

T1(m,n) + T2(n,m), m and n even.

It follows that, for even weight N = m + n, T (m, 0, n) is determined by either
Ym,n or Yn,m, depending on the parities of m and n. Note that both Ym,n and Yn,m

are linear combinations of integrals Xk,l with fixed k + l = N − 2 = m+ n− 2.

We discuss this theorem in Section 5.
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3. An expression for the Tornheim series T (a, 0, c)

In this section we present an analytic expression for the Tornheim double series
T (a, 0, c), valid for a > 2, c > 2 and a, c 6∈ N. Note that T (a, 0, c) will be finite if
a > 1 and c > 1. We employ here and in Section 4 the shorthand notation

(3.1) ζ̄(z, q) := ζ(1 − z, q) and ζ̄(z) := ζ(1 − z), for z 6= 0.

All the properties of the Hurwitz zeta function that we will use can be expressed
in terms of the function ζ̄(z, q) as follows:

d

dq
ζ̄(z, q) = (z − 1)ζ̄(z − 1, q),(3.2)

ζ̄(k, q) = −1

k
Bk(q),(3.3)

ζ̄′(k, q) = −1

k
Ak(q).(3.4)

where Bk(q) is a Bernoulli polynomial and Ak(q) is the Bernoulli function (2.1).
The identities derived below appear from integration by parts. The restrictions

imposed on the parameters guaranteee that the boundary terms vanish. Recall that
the Hurwitz zeta function satisfies the identity

ζ(z, q) = q−z + ζ(z, 1 + q),

which implies ζ(z, 0) = ζ(z, 1) if z < 0. Equivalently,

(3.5) ζ̄(z, 0) = ζ̄(z, 1) if z > 1.

Theorem 3.1. Let a, c ∈ R − N with a, c > 2. Then

(3.6) T (a, 0, c) = 4λ(a)λ(c) sin
(πc

2

)

×
[

sin
(πa

2

)

{

ζ̄(a)ζ̄(c) − ζ̄(a+ c)B(a, c)

1 − tan
(

πa
2

)

tan
(

πc
2

)

}

− 1

2
cos
(πa

2

)

∫ 1

0

[

ζ̄(a, q) − ζ̄(a, 1 − q)
]

ζ̄(c, q) cotπq dq

]

.

The proof is obtained by analyzing the behavior as ε → 0 of T (a, b, c) given in
(3.8) below. This was first derived in [7]. The parameter b is changed to ε in order
to remind ourselves that it is small.

Theorem 3.2. Let a, b, c ∈ R, satisfying a + c > 1, b + c > 1, and a + b + c > 2,
and define the auxiliary function λ(z) as in (2.4),

λ(z) :=
Γ(1 − z)

(2π)1−z
=

π

(2π)1−z Γ(z) sinπz
.(3.7)

For a, b, c 6∈ N we have

(3.8) T (a, b, c) = 4λ(a)λ(b)λ(c) sin
(πc

2

)

Q(a, b, c)

where

Q(a, b, c) := cos
(

π
2 (a− b)

)

[J(c, a, b) + J(c, b, a)]

− cos
(

π
2 (a+ b)

)

[I(a, b, c) + J(a, b, c)]
(3.9)
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and I(a, b, c), J(a, b, c) are the integrals defined by

I(a, b, c) :=

∫ 1

0

ζ(1 − a, q)ζ(1 − b, q)ζ(1 − c, q) dq(3.10)

and

J(a, b, c) :=

∫ 1

0

ζ(1 − a, q)ζ(1 − b, q)ζ(1 − c, 1 − q) dq,(3.11)

where ζ(z, q) is the Hurwitz zeta function.

We consider the behavior of each of the factors in (3.8) as b = ε→ 0.

1) The term λ(ε) is regular in view of λ(0) = 1
2π . The first few terms of its expansion

are

(3.12) λ(ε) =
1

2π
+

(γ + log 2π)

2π
ε+ O(ε2).

2) The expansion

(3.13) cos
(π

2
(a± ε)

)

= cos
πa

2
∓ π

2
sin

πa

2
ε+O(ε2)

is elementary.

3) To obtain the limiting value of Q(a, ε, c) as ε → 0, it is required to analyze the
behavior of ζ̄(ε, q) as it appears in

(3.14) I(a, ε, c) =

∫ 1

0

ζ̄(a, q)ζ̄(ε, q)ζ̄(c, q) dq.

The function ζ̄(ε, q) has a pole at ε = 0 and its Laurent expansion at that pole is

(3.15) ζ̄(ε, q) = −1

ε
− ψ(q) +O(ε).

where ψ(q) = d
dq log Γ(q). This expansion is not uniform in q, as the difference

(3.16) ζ̄(ε, q) − (−1/ε− ψ(q))

blows up as q → 0, for any fixed ε > 0. Indeed,

(3.17) ψ(q) = −1

q
− γ +O(q),

and

(3.18) ζ̄(ε, q) = qε−1 + ζ(1 − ε) +O(q),

showing that (3.16) is not bounded as q → 0. This issue is resolved by shifting the
second argument of the integral in (3.14). Lemma 3.3 gives the integral I(a, ε, c) in
terms of integrals of the form I(a′, 1+ε, c′). The integrand here contains the factor
ζ̄(1 + ε, q) = ζ(−ε, q), whose expansion involves log Γ(q), producing a similar blow
up. Lemma 3.4 shifts the second argument again, and now I(a, ε, c) is expressed in
terms of I(a′, 2 + ε, c′). The integrand now contains ζ̄(2 + ε, q) = ζ(−1 − ε, q) and
a uniform expansion is finally achieved.
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Lemma 3.3. For ε > 0 and a, c > 1 we have

(3.19) I(a, ε, c) = −1

ε
[(a− 1)I(a− 1, ε+ 1, c) + (c− 1)I(a, ε+ 1, c− 1)] .

Similarly,

(3.20) J(a, ε, c) = −1

ε
[(a− 1)J(a− 1, ε+ 1, c) − (c− 1)J(a, ε+ 1, c− 1)] .

Proof. The identity

(3.21) ζ̄(ε, q) =
1

ε

d

dq
ζ̄(1 + ε, q)

yields, for ε > 0,

I(a, ε, c) =
1

ε

∫ 1

0

ζ̄(a, q)ζ̄(c, q)
d

dq
ζ̄(1 + ε, q) dq

=
1

ε
ζ̄(a, q)ζ̄(c, q)ζ̄(1 + ε, q)

∣

∣

∣

1

0
− 1

ε

∫ 1

0

ζ̄(1 + ε, q)
d

dq

[

ζ̄(a, q)ζ̄(c, q)
]

dq.

Now observe that the boundary terms vanish for ε > 0 and a, c > 1, according to
the identity (3.5). The identity for J follows along the same lines. �

The expansion of I(a, ε, c) requires to iterate the result of Lemma 3.3 twice.

Lemma 3.4. For ε > 0 and a, c > 2,

I(a, ε, c) =
1

ε(ε+ 1)

[

(a− 1)(a− 2)I(a− 2, ε+ 2, c)

+ 2(a− 1)(c− 1)I(a− 1, ε+ 2, c− 1) + (c− 1)(c− 2)I(a, ε+ 2, c− 2)
]

,

with similar expressions for J(a, ε, c) and J(c, a, ε).

Replacing in the expression (3.8) gives

(3.22) T (a, ε, c) =
4λ(a)λ(ε)λ(c)

ε(ε+ 1)
sin
(πc

2

)

LT (a, ε, c)

where

(3.23) LT (a, ε, c) = cos
(π

2
(a− ε)

)

H+(a, ε, c) − cos
(π

2
(a+ ε)

)

H−(a, ε, c),

with

H+(a, ε, c) = (1 − a)(2 − a)J(c, a− 2, ε+ 2) + 2(1 − a)(1 − c)J(c− 1, a− 1, ε+ 2)

+ (1 − c)(2 − c)J(c− 2, a, ε+ 2) + (1 − c)(2 − c)J(c− 2, ε+ 2, a)

− 2(1 − a)(1 − c)J(c− 1, ε+ 2, a− 1) + (1 − a)(2 − a)J(c, ε+ 2, a− 2),

(3.24)

and

H−(a, ε, c) = (1 − a)(2 − a)I(a− 2, ε+ 2, c) + 2(1 − a)(1 − c)I(a− 1, ε+ 2, c− 1)

+ (1 − c)(2 − c)I(a, ε+ 2, c− 2) + (1 − a)(2 − a)J(a− 2, ε+ 2, c)

− 2(1 − a)(1 − c)J(a− 1, ε+ 2, c− 1) + (1 − c)(2 − c)J(a, ε+ 2, c− 2).

(3.25)

The last factor in (3.22) is now expanded in powers of ε to obtain

(3.26) LT (a, ε, c) = Ca(M+−M−)+ε
[

Ca(N+ −N−) +
π

2
Sa(M+ +M−)

]

+O(ε2),
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with a self-explanatory notation. For example M+ is the limit as ε → 0 of the
expression multiplying cos(π

2 (a − ε)) in (3.23), N+ is the term of order ε in the
same factor and Ca = cos(πa/2). We now reduce all the terms in (3.26).

Proposition 3.5. The identity M+ = M− holds. Therefore, the term LT (a, ε) is
of order ε, and we conclude that T (a, ε, c), in (3.22), is non-singular as ε→ 0.

Proof. The proof of this result begins with

(3.27)

M+ = (1 − a)(2 − a)J(c, a− 2, 2) + 2(1 − a)(1 − c)J(c− 1, a− 1, 2)

+ (1 − c)(2 − c)J(c− 2, a, 2) + +(1 − c)(2 − c)J(c− 2, 2, a)

− 2(1 − a)(1 − c)J(c− 1, 2, a− 1) + (1 − a)(2 − a)J(c, 2, a− 2),

and

M− = (1 − a)(2 − a)I(a− 2, 2, c) + 2(1 − a)(1 − c)I(a− 1, 2, c− 1)

+ (1 − c)(2 − c)I(a, 2, c− 2) + (1 − a)(2 − a)J(a− 2, 2, c)

− 2(1 − a)(1 − c)J(a− 1, 2, c− 1) + (1 − c)(2 − c)J(a, 2, c− 2).

We now establish some relations for the integrals I and J . These are then
employed to show that M+ = M−.

Lemma 3.6. The integrals I and J satisfy

(3.28) J(z, z′, 2) = I(z, z′, 2) and J(z, 2, z′) = J(z′, 2, z).

Proof. Start with

(3.29) J(z, z′, 2) =

∫ 1

0

ζ̄(z, q)ζ̄(z′, q)ζ̄(2, 1 − q) dq,

with ζ̄(2, q) = ζ(−1, q). From ζ(1 − k, q) = −Bk(q)/k and the symmetry of B2 we
obtain

(3.30) ζ̄(2, 1 − q) = ζ(−1, 1 − q) = ζ(−1, q) = ζ̄(2, q).

The first identity follows from there. A similar argument establishes the second
one. �

A direct calculation using Lemma 3.6, now shows that M+ = M− in (3.26). �

Calculation of M+. The next step is to simplify the expression for M+ given in
(3.27).

Proposition 3.7. Let a > 2, c > 2 ∈ R. Then

(3.31) M+ = 2

(

ζ̄(a)ζ̄(c) − ζ̄(a+ c)B(a, c)

1 − tan(πa/2) tan(πc/2)

)

.
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Proof. Start by producing an alternative form of the term J(c, a− 2, 2) given by

J(c, a− 2, 2) =

∫ 1

0

ζ̄(c, q)ζ̄(a− 2, q)ζ̄(2, 1 − q) dq

=
1

a− 2

∫ 1

0

ζ̄(c, q)ζ̄(2, 1 − q)
d

dq
ζ̄(a− 1, q) dq

=
1

2 − a

∫ 1

0

ζ̄(a− 1, q)
d

dq

[

ζ̄(c, q)ζ̄(2, 1 − q)
]

dq

=
1

2 − a

∫ 1

0

ζ̄(a− 1, q)
[

(c− 1)ζ̄(c− 1, q)ζ̄(2, 1 − q)

+ζ̄(c, q)ζ̄(1, 1 − q)
]

dq.

Now recall that
ζ̄(1, q) = −ζ̄(1, 1 − q),

since ζ̄(1, q) = −B1(q) = 1
2 − q, and also

ζ̄(2, q) = ζ̄(2, 1 − q),

as shown before. Conclude that

(3.32) (a− 2)J(c, a− 2) = (1 − c)I(a− 1, c− 1, 2) + I(a− 1, c, 1).

Reversing the order of a and c and considering the expression in (3.27), the first
three terms of M+ in (3.27) are reduced to

(3.33) (1 − a)I(a− 1, c, 1) + (1 − c)I(c− 1, a, 1).

A similar analysis gives an expression for the last three terms in (3.27). This yields
a formula for M+ in terms of the integrals I and J where one of the parameters is
1.

Lemma 3.8. The term M+ in (3.27) is given by

M+ = (1−a)I(a−1, c, 1)+(1−c)I(c−1, a, 1)+(1−a)J(a−1, 1, c)−(1−c)J(a, 1, c−1).

We now consider the integrals appearing in this expression for M+.

Lemma 3.9. The integral J satisfies

(3.34) J(u, 1, v) = −J(v, 1, u),

Proof. This comes directly from ζ̄(1, 1 − q) = −ζ̄(1, q). �

The expression for M+ in Lemma 3.8 is now simplified.

Lemma 3.10. Let a > 2, c > 2 ∈ R. Then

(1 − a)I(a− 1, c, 1) + (1 − c)I(a, c− 1, 1) = ζ̄(a)ζ̄(c) −
∫ 1

0

ζ̄(a, q)ζ̄(c, q) dq

and

(1 − a)J(a− 1, 1, c)− (1 − c)J(a, 1, c− 1) = ζ̄(a)ζ̄(c) −
∫ 1

0

ζ̄(a, q)ζ̄(c, 1 − q) dq.

Therefore

(3.35) M+ = 2ζ̄(a)ζ̄(c) −
∫ 1

0

ζ̄(a, q)ζ̄(c, q) dq −
∫ 1

0

ζ̄(a, q)ζ̄(c, 1 − q) dq.
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Proof. Start with

(1 − a)I(a− 1, c, 1) = (1 − a)

∫ 1

0

ζ̄(a− 1, q)ζ̄(c, q)ζ̄(1, q) dq

and the identity (a− 1)ζ̄(a − 1, q) = d
dq ζ̄(a, q). Integration by parts and the value

ζ̄(1, q) = 1
2 − q give the first identity. The rest of the formulas are established in a

similar form. �

The identites
∫ 1

0

ζ(1 − a, q)ζ(1 − c, q) dq = ζ(1 − a− c)B(a, c)
cos(π

2 (a− c))

cos(π
2 (a+ c))

,

and
∫ 1

0

ζ(1 − a, q)ζ(1 − c, 1 − q) dq = ζ(1 − a− c)B(a, c)

appear in Theorem 3.1 in [4]. Replacing in (3.35) produces the final expression for
M+ claimed in (3.31). �

Calculation of N+. This is defined in (3.26) as the term of order ε in the expansion
of H+(a, ε, c) defined in (3.24). We illustrate the general method of calculation by
computing the term of order ε in the integral:

J(c, a− 2, ε+ 2) =

∫ 1

0

ζ̄(c, q)ζ̄(a− 2, q)ζ(−1 − ε, 1 − q) dq.

The term of order ε is

−
∫ 1

0

ζ̄(c, q)ζ̄(a− 2, q)ζ′(−1, 1 − q) dq

= − 1

a− 2

∫ 1

0

(

d

dq
ζ̄(a− 1, q)

)

ζ̄(c, q)ζ′(−1, 1 − q) dq.

Integrate by parts and observe that the boundary terms vanish to see that the term
of order ε is

1

a− 2

∫ 1

0

ζ̄(a− 1, q)
d

dq

[

ζ̄(c, q)ζ′(−1, 1 − q)
]

dq.

Thus,

(a− 2) × the term of order ε in J(a− 2, c, ε+ 2)

is

(c− 1)

∫ 1

0

ζ̄(c− 1, q)ζ̄(a− 1, q)ζ′(−1, 1 − q) dq

−
∫ 1

0

ζ̄(c, q)ζ̄(a− 1, q)
d

du
ζ′(−1, u)

∣

∣

∣

u=1−q
dq.

Now use

d

du
ζ′(−1, u) =

∂

∂z

∣

∣

∣

z=−1

∂

∂u
ζ(z, u) =

∂

∂z

∣

∣

∣

z=−1
(−zζ(z + 1, u)) = −ζ(0, u) + ζ′(0, u),
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to check that the contribution coming from ζ′(−1, 1− q) vanishes and to verify the
result described next.

Lemma 3.11. The part ofN+ coming from integrals with ε+2 in the third variable
is

−(1 − a)

[
∫ 1

0

ζ̄(c, q)ζ̄(a− 1, q)ζ(0, 1 − q) dq −
∫ 1

0

ζ̄(c, q)ζ̄(a− 1, q)ζ′(0, 1 − q) dq

]

−(1 − c)

[
∫ 1

0

ζ̄(a, q)ζ̄(c− 1, q)ζ(0, 1 − q) dq −
∫ 1

0

ζ̄(a, q)ζ̄(c− 1, q)ζ′(0, 1 − q) dq

]

.

Similar calculations produce the other parts of N+. We spare the reader the
details.

Proposition 3.12. The term N+ is given by

2ζ̄(a)ζ̄(c) −
∫ 1

0

ζ̄(a, q)ζ̄(c, q) dq −
∫ 1

0

ζ̄(a, 1 − q)ζ̄(c, q) dq

+ (1 − a)

[
∫ 1

0

ζ̄(c, q)ζ̄(a− 1, q)ζ′(0, 1 − q) dq

+

∫ 1

0

ζ̄(c, 1 − q)ζ̄(a− 1, q)ζ′(0, 1 − q) dq

]

+ (1 − c)

[
∫ 1

0

ζ̄(a, q)ζ̄(c− 1, q)ζ′(0, 1 − q) dq

−
∫ 1

0

ζ̄(a, 1 − q)ζ̄(c− 1, q)ζ′(0, q) dq

]

.

The process is now repeated to produce a similar expression for N−. The result
is stated next.

Proposition 3.13. The difference N+ −N− is given by

N+ −N− = (1 − a)

∫ 1

0

ζ̄(a− 1, q)ζ̄(c, q) [ζ′(0, q) + ζ′(0, 1 − q)] dq

+ (1 − a)

∫ 1

0

ζ̄(a− 1, q)ζ̄(c, 1 − q) [ζ′(0, q) + ζ′(0, 1 − q)] dq

+ (1 − c)

∫ 1

0

ζ̄(a, q)ζ̄(c− 1, q) [ζ′(0, q) + ζ′(0, 1 − q)] dq

− (1 − c)

∫ 1

0

ζ̄(a, q)ζ̄(c− 1, 1 − q) [ζ′(0, q) + ζ′(0, 1 − q)] dq.

The difference N+ −N− is now given in the form stated in Theorem 2.1. Recall
that that ζ′(0, q) = log Γ(q) − log

√
2π, so that

(3.36) ζ′(0, q) + ζ′(0, 1 − q) = log [Γ(q)Γ(1 − q)] − log 2π = − log(2 sinπq),

where we have used the reflection rule for the Gamma function

(3.37) Γ(q)Γ(1 − q) =
π

sinπq
.

Integration by parts gives

(1 − a)

∫ 1

0

ζ̄(a− 1, q)ζ̄(c, q) dq = −(1 − c)

∫ 1

0

ζ̄(a, q)ζ̄(c− 1, q) dq,
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and

(1 − a)

∫ 1

0

ζ̄(a− 1, q)ζ̄(c, 1 − q) dq = (1 − c)

∫ 1

0

ζ̄(a, q)ζ̄(c− 1, 1 − q) dq.

These identities show that in the expansion of N+ − N− in Proposition 3.13, we
can ignore the contribution of the q-independent term − log 2 in (3.36) and produce
our final expression for the term N+ −N−.

Proposition 3.14. The term N+ −N− in (3.26) is given by

∫ 1

0

d

dq

[

ζ̄(c, q)
(

ζ̄(a, q) − ζ̄(a, 1 − q)
)]

log sin(πq) dq

= −π
∫ 1

0

ζ̄(c, q)
[

ζ̄(a, q) − ζ̄(a, 1 − q)
]

cot(πq) dq.

Taking the limit as ε → 0 in (3.22), we obtain the result described in Theorem
2.1.

4. An expression for the Tornheim sum T (m, 0, n)

In this section we analyze the behavior of T (a, 0, c) given in Theorem 2.1 as the
parameters a and c approach positive integer values. The notation a = m+εa, c =
n+ εc with m,n ∈ N,m, n ≥ 2 and εa, εa → 0, is empoyed throughout.

Observe that λ(z) is singular as z becomes a positive integer, so in order to
obtain the limiting value T (m, 0, n), it remains to consider the limiting behavior of
T (a, 0, c).

Define

(4.1) L1(m,n) := lim
a→m

lim
c→n

4λ(a)λ(c) sin
(πa

2

)

sin
(πc

2

)

×
{

ζ̄ (a) ζ̄ (c) − ζ̄ (a+ c)B(a, c)

1 − tan
(

πa
2

)

tan
(

πc
2

)

}

and

(4.2) L2(m,n) := − lim
a→m

lim
c→n

2λ(a)λ(c) cos
(πa

2

)

sin
(πc

2

)

×
∫ 1

0

[

ζ̄(a, q) − ζ̄(a, 1 − q)
]

ζ̄(c, q) cotπq dq.

The expressions for L1(m,n) and L2(m,n) given in this section give Theorem 2.2
from Theorem 2.1.

The evaluation of L1(m,n). This is elementary. The simplification employs the
relations

ζ(2k) =
(−1)k+1(2π)2kB2k

2(2k)!
, k ∈ N ∪ {0},(4.3)

ζ(1 − k) =
(−1)k+1Bk

k
, k ∈ N,
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and

ζ′(−2k) = (−1)k (2k)!ζ(2k + 1)

2(2π)2k
, k ∈ N.

Proposition 4.1. The function L1(m,n) defined in (4.1) is given by

(4.4) L1(m,n) = ζ(m)ζ(n) − 1

2
ζ(m+ n).

Proof. The expansion of λ(z) about z = k ∈ N is

λ (k + ε) = (−1)k (2π)
k−1

Γ (k)

[

1

ε
+ log 2π − ψ (k) +O (ε)

]

.(4.5)

We now examine the behavior of the other factors in (4.1) as εa, εc tend to zero.
The result depends on the parities of m and n.

To simplify our notation we define the 4-parity of the integer k, pk, as

(4.6) pk := (−1)⌊k/2⌋ =

{

(−1)k/2, k even,

(−1)(k−1)/2, k odd,

Then, for k even:

sin
(π

2
(k + ε)

)

=
π

2
pkε+O

(

ε2
)

,(4.7)

tan
(π

2
(k + ε)

)

=
π

2
ε+O

(

ε2
)

,(4.8)

ζ̄ (k + ε) = ζ (1 − k) +O (ε) ,(4.9)

and for k odd:

sin
(π

2
(k + ε)

)

= pk +O (ε) ,(4.10)

tan
(π

2
(k + ε)

)

= − 2

πε
+O

(

ε0
)

,(4.11)

ζ̄ (k + ε) = −ζ′ (1 − k) ε+O
(

ε2
)

, k ≥ 3,(4.12)

since ζ(−2k) = 0 for k ∈ N.

Therefore

(a) m and n even:

L1(m,n) =
(2π)m+n

4Γ (m) Γ (n)
[ζ (1 −m) ζ (1 − n) −B(m,n)ζ (1 −m− n)] pmpn

(b) m even and n odd:

L1(m,n) =
(2π)

m+n−1

Γ (m) Γ (n)
[ζ (1 −m) ζ′ (1 − n) −B(m,n)ζ′ (1 −m− n)] pmpn
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(c) m odd and n even:

L1(m,n) =
(2π)

m+n−1

Γ (m) Γ (n)
[ζ′ (1 −m) ζ (1 − n) −B(m,n)ζ′ (1 −m− n)] pmpn

(d) m and n odd:

L1(m,n) =
(2π)m+n

4Γ (m) Γ (n)

[

4

π2
ζ′ (1 −m) ζ′ (1 − n) +B(m,n)ζ (1 −m− n)

]

pmpn.

The result now follows by using the relations (4.3). �

The evaluation of L2(m,n). This proceeds along similar lines. We employ the
expansion

ζ̄(k + ε, q) = ζ̄(k, q) + εζ̄′(k, q) + o(ε)

= −1

k
[Bk(q) + εAk(q)] + o(ε),

and the reflection property of the Bernoulli polynomials,

(4.13) Bk(1 − q) = (−1)kBk(q),

to establish the vanishing of some of the integrals that appear in intermediate calcu-
lations. The results are expressed in terms of the four integrals IAA, IAB, IBB , JAA

introduced in (2.5).

Proposition 4.2. The limit L2(m,n) defined in (4.2) is given by

(4.14) L2(m,n) = pm+n
(2π)m+n−1

m!n!
ℓ2(m,n).

Here pn+m is defined in (4.6) and the function ℓ2(m,n) is given in terms of the
following basic integrals,

IBB(k, l) :=

∫ 1

0

Bk(q)Bl(q)K(q) dq,(4.15)

IAB(k, l) :=
1

π

∫ 1

0

Ak(q)Bl(q)K(q) dq,(4.16)

IAA(k, l) :=
1

π2

∫ 1

0

Ak(q)Al(q)K(q) dq,(4.17)

JAA(k, l) :=
1

π2

∫ 1

0

Ak(q)Al(1 − q)K(q) dq.(4.18)

by

(a) m and n even:

ℓ2(m,n) = mIAB(m− 1, n) + nIAB(m,n− 1),(4.19)

(b) m and n odd:

ℓ2(m,n) = mIAB(n,m− 1) + nIAB(n− 1,m).(4.20)
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(c) m odd and n even:

ℓ2(m,n) =
1

2
(mIBB(m− 1, n) + nIBB(m,n− 1)) ,(4.21)

(d) m even and n odd:

ℓ2(m,n) = −mIAA(m− 1, n) − nIAA(m,n− 1)(4.22)

−mJAA(m− 1, n) + nJAA(m,n− 1),

Proof. We make use of the expansion

cos
(π

2
(k + ε)

)

=

{

pk + o(ε), k even

−pk
π

2
ε+ o(ε), k odd.

(4.23)

In the case m even, the singularity of λ(m+ εa) as εa → 0 is balanced by

ζ̄ (m+ εa, q) − ζ̄ (m+ εa, 1 − q) = − 1

m
[Am(q) −Am(1 − q)] εa +O

(

εa
2
)

.

For m odd, the combination λ(m+ εa) cos ((m+ εa)π/2) is regular as εa → 0.
The singularity at n+ εc is treated similarly: the term λ(n + εc) sin ((n+ εc)π/2)
is regular for n even; for n odd, the singularity of λ(n+ εc) requires the vanishing
of the integral in (4.2). This is a consequence of the symmetry of the function
[

ζ̄(a, q) − ζ̄(a, 1 − q)
]

cotπq, about q = 1/2.

Introduce the notation

(4.24) αm,n := pm+n
(2π)m+n−2

m!n!
,

where pm+n is defined in (4.6). Then

(a) for m and n even:

L2(m,n) = −παm,n

∫ 1

0

[Am(q) −Am(1 − q)]Bn(q) cotπq dq,

(b) for m even and n odd:

L2(m,n) = 2αm,n

∫ 1

0

[Am(q) −Am(1 − q)]An(q) cotπq dq,

(c) for m odd and n even:

L2(m,n) = −π2αm,n

∫ 1

0

Bm(q)Bn(q) cotπq dq,

(d) for m and n odd:

L2(m,n) = −2παm,n

∫ 1

0

Bm(q)An(q) cotπq dq.

The final expression in Proposition 4.2 is obtained by writing the integrals above
in terms of the basic integrals defined in (4.15). This can be achieved by using

π cotπq =
d

dq
log sinπq = K ′(q),
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integrating by parts and employing the recurrence relations

d

dq
Bk(q) = kBk−1(q),(4.25)

d

dq
Ak(q) = kAk−1(q) +

k

k − 1
Bk−1(q), k ≥ 2.(4.26)

See [5] for a derivation of (4.26).

The kernel K(q) has only a logarithmic singularity at q = 0, so it is possible to
separate the integrals involving the difference Ak(q) −Ak(1 − q). The functions

Ak(q) are well behaved in [0, 1]. Only A1(q) = log
[

Γ(q)/
√

2π
]

has a singularity at
q = 0, and this is only logarithmic, and therefore integrable in the cases of interest
here. �

Example 4.1. The Tornheim sum T (2, 0, 2) is the simplest example of even weight.
Its exact value is

(4.27) T (2, 0, 2) =
3

4
ζ(4) =

π4

120
,

see (6.4). Theorem 2.2 states that T (2, 0, 2) = L1(2, 2) + L2(2, 2), with

(4.28) L1(2, 2) =
π4

45
,

and

(4.29) L2(2, 2) = 4π3 (IAB(1, 2) + IAB(2, 1)) .

Therefore

(4.30) T (2, 0, 2) =
π4

45
+ 4π2

∫ 1

0

A1(q)B2(q)K(q) dq + 4π2

∫ 1

0

A2(q)B1(q)K(q) dq,

and we have the evaluation

(4.31)

∫ 1

0

[A1(q)B2(q) +A2(q)B1(q)] log sinπq dq =
π2

288
.

Example 4.2. Theorem 2.2 gives

(4.32) T (2, 0, 6) =
π8

8100
+

8π7

45
IAB(1, 6) +

8π7

15
IAB(2, 5).

Theorem 4.3. Every Tornheim sum can be expressed as a finite sum of integrals
of the form IAB .

5. A representation for IAB(m,n) in terms of Clausen functions

In this section we consider the integral

(5.1) IAB(m,n) =
1

π

∫ 1

0

Am(q)Bn(q)K(q) dq,

and express it in terms of the family introduced in (2.11),

(5.2) Xk,l := (−1)⌊l/2⌋ l!

(2π)l

∫ 1

0

log Γ(q)Bk(q)Cll+1(2πq) dq.

Here Cll(x) are the Clausen functions defined in (1.18) and (1.19).
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The reduction of the integrals IAB employs a new family of special functions,
Kn(q), n ∈ N0, defined as the iterated primitives of the kernel

(5.3) K0(q) := −K(q) = − log sinπq,

that is,

(5.4) Kn(q) := n

∫ q

0

Kn−1(q
′)dq′, n ≥ 1.

The functions Kn(q) are normalized by the condition Kn(0) = 0 for n ≥ 1.

Note 5.1. The plan is to use (n + 1)Kn(q) = K ′
n+1(q) and integrate by parts to

transform the expression for IAB(m,n) into a finite sum of integrals in which the

only type-A function that appears is A1(q) = log Γ(q) − log
√

2π.

The Fourier expansion of K0(q) is

(5.5) K0(q) = log 2 +
1

2
Cl1(2πq),

where Cl1 is a Clausen function. We first show thatKn(q) is the sum of a polynomial
in q of degree n and a multiple of the Clausen function Cln+1(2πq) (see (5.22)). We
then show that the polynomial part can be integrated out explicitly in terms of zeta
values, leading finally to the analytic expression for the Tornheim sums T (m, 0, n)
of even weight N = m+ n in terms of the integrals Xkl, given in Theorem 2.3.

We first recall some basic properties of the functions Am(q), introduced in [5].
The function

(5.6) Am(q) := m
∂

∂z
ζ(z, q)

∣

∣

∣

z=1−m

satisfies, for m ∈ N − {1}, the recurrence

(5.7)
d

dq
Am(q) = mAm−1(q) +

m

m− 1
Bm−1(q),

with initial condition

(5.8) A1(q) = log Γ(q) − log
√

2π.

The boundary values are given by

(5.9) Am(0) = Am(1) = mζ′(1 −m), for m ≥ 2,

and

(5.10) A1(0
+) = −∞, A1(1) = − log

√
2π.

The recurrence (5.7) is similar to the relation

(5.11)
d

dq
Bm(q) = mBm−1(q),

satisfied by the Bernoulli polynomials.

Theorem 5.2. The integral IAB(m,n) can be expressed in terms of the family

(5.12) Uk,l :=

∫ 1

0

log Γ(q)Bk(q)Kl(q) dq,

with k + l = m+ n− 1.
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Proof. The proof is by induction on m. We show first that any integral of the form

∫ 1

0

Am(q)Bn(q)Kp(q) dq

can be expressed in terms of

(5.13) U∗
k,l :=

∫ 1

0

A1(q)Bk(q)Kl(q) dq,

with k + l + 1 = m + n + p, and then transform into Uk,l by using A1(q) =

log Γ(q) − log
√

2π.

Start with

(p+ 1)

∫ 1

0

Am(q)Bn(q)Kp(q) dq =

∫ 1

0

Am(q)Bn(q)
d

dq
Kp+1(q) dq.

Integrate by parts and use Kp+1(0) = 0, (5.7), (5.9) and (5.11) to derive

(p+ 1)

∫ 1

0

Am(q)Bn(q)Kp(q) dq = Am(1)Bn(1)Kp+1(1)

−m

∫ 1

0

Am−1(q)Bn(q)Kp+1(q) dq

− m

m− 1

∫ 1

0

Bm−1(q)Bn(q)Kp+1(q) dq

− n

∫ 1

0

Am(q)Bn−1(q)Kp+1(q).

(5.14)

The term involving the product of two Bernoulli polynomials can be evaluated
in closed form, and only the last term in (5.14) requires further analysis. Repeating
the process to this last term produces

(p+ 1)(p+ 2)

∫ 1

0

Am(q)Bn−1(q)Kp+1(q) dq = Am(1)Bn−1(1)Kp+2(1)

−m

∫ 1

0

Am−1(q)Bn−1(q)Kp+2(q) dq −
m

m− 1

∫ 1

0

Bm−1(q)Bn−1(q)Kp+2(q) dq

− (n− 1)

∫ 1

0

Am(q)Bn−2(q)Kp+2(q) dq.

We conclude that each integration by parts produces terms that can be evaluated
in the stated closed form (by the induction hypothesis) and one integral where the
index of the Bernoulli polynomial term is decreased by one. Note that the indices
j, k, l of the three functions in any term of the integrand appearing in this procedure
satisfy j+k+ l = m+n+p. The case of interest, IAB(m,n), corresponds to p = 0.
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Eventually we arrive at

(p+ n+ 1)

∫ 1

0

Am(q)B0(q)Kp+n(q) dq = Am(1)B0(1)Kp+n+1(1)

−
∫ 1

0

Kp+n+1(q)B0(q)

(

mAm−1(q) +
m

m− 1
Bm−1(q)

)

dq

−
∫ 1

0

Am(q)
d

dq
B0(q)Kp+n+1(q) dq.

The fact that B0(q) ≡ 1, so that the last integral vanishes identically, completes
the argument.

It remains to prove that integrals of the form

(5.15) Vk,m,n :=

∫ 1

0

Bk(q)Bm(q)Kn(q) dq

can be evaluated in closed form and to use the relation (5.8) to eliminate A1(q)
from the formulas.

The first step in this part of the proof is to use the relation

(5.16) Bn1
(q)Bn2

(q) =

k(n1,n2)
∑

k=0

[

n1

(

n2

2k

)

+ n2

(

n1

2k

)]

B2k

n1 + n2 − 2k
Bn1+n2−2k(q)

+ (−1)n1+1 n1!n2!

(n1 + n2)!
Bn1+n2

,

with

(5.17) k(n1, n2) = Max {⌊n1/2⌋}, ⌊n2/2⌋}} ,
for the product of two Bernoulli polynomials in order to reduce Vk,m,n to sums of
terms of the form

(5.18) Wm,n :=

∫ 1

0

Bm(q)Kn(q) dq.

Integration by parts show that (5.18) can be written in terms of the W -integrals
with second index 0. Indeed,

Wm,n =
1

m+ 1

∫ 1

0

Kn(q)
d

dq
Bm+1(q) dq

=
Bm+1(1)Kn(1)

m+ 1
− 1

m+ 1

∫ 1

0

Bm+1(q)
d

dq
Kn(q)

=
Bm+1(1)Kn(1)

m+ 1
− n

m+ 1
Wm+1,n−1,

and iterating this procedure yields

(5.19) Wm,n =

n
∑

k=1

(−1)k+1

(m+ 1)k
Bm+k(1)Kn−k+1(1) +

(−1)n

(m+ 1)n
Wm+n,0,

where (m)k = m(m+ 1) · · · (m+ k − 1) is the Pochhammer symbol.
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The closed form of Vk,m,n follows from

(5.20) Wr,0 =

∫ 1

0

Br(q)K0(q) dq =











log 2 r = 0,

0 r odd,

(−1)r/2r!ζ(r + 1)/(2π)r, r > 0 even,

given as Example 5.2 in [4]. �

Note 5.3. The boundary terms Kn(1) are given in (5.29).

Our final step in the reduction of the integrals IAB makes use of a representation
of the kernels Kn(q) in terms of the Clausen functions Cln(x), defined in (1.18) and
(1.19).

Proposition 5.4. The kernels Kn(q) are given by

(5.21) K0(q) = log 2 +
1

2
Cl1(2πq),

and, for n ≥ 1,

(5.22) Kn(q) = qn log 2 + n!

⌊n/2⌋
∑

k=1

(−1)k+1ζ(2k + 1)

(2π)2k(n− 2k)!
qn−2k + pn

n!

(2π)n
Cln+1(2πq),

where the coefficient pn = (−1)⌊n/2⌋ is the 4-parity of n defined in (4.6).

Proof. The Fourier series expansion of the function K0(q) = − log sin(πq)

(5.23) K0(q) = log 2 +
1

2

∞
∑

k=1

cos(2πkq)

k
.

is standard. To compute the expansion for K1(q), we cannot just integrate term by
term the series (5.23), since it is not uniformly convergent for q ∈ [0, 1]. To bypass
this problem, observe that the indefinite integral of K0(q) can be written as

(5.24)

∫

K0(q)dq = q log
(

1 − e2πqi
)

− q log sin (πq) − πi

2
q2 − i

2π
Li2
(

e2πqi
)

,

where Lin(z) is the polylogarithmic function defined for z ∈ C, |z| ≤ 1 by

(5.25) Lin(z) :=

∞
∑

k=1

zk

kn
, n ≥ 2.

Separating the real and imaginary parts we obtain, for 0 ≤ q ≤ 1,

(5.26)

∫

K0(q)dq = q log 2 +
1

2π

∞
∑

k=1

sin(2πkq)

k2

+ i

[

π

2
q(1 − q) +

1

2π

∞
∑

k=1

cos(2πkq)

k2

]

,

and the proposition is proved for n = 1 since the term in brackets is a q-independent
constant. This can be seen directly from Hurwitz’s Fourier series representation of
the Bernoulli polynomials

(5.27) Bn(q) = − n!

(2πi)n

∞
∑′

k=−∞

e2πikq

kn
,
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where the prime indicates that the term k = 0 must be excluded in the sum.
The result for n ≥ 2 can be obtained directly from the expression for K1(q),

(5.28) K1(q) = q log 2 +
1

2π

∞
∑

k=1

sin(2πkq)

k2
,

integrating successively term by term, which is now legitimate since, for n ≥ 2, the
series defining the Clausen function Cln(x) is uniformly convergent. �

Note 5.5. The evaluation of the basic integral IAB(m,n) requires the boundary
values of Kn(q), n ∈ N, at q = 1. These are given by

(5.29) Kn(1) = log 2 + n!

⌊(n−1)/2⌋
∑

k=1

(−1)k+1ζ(2k + 1)

(2π)2k(n− 2k)!
, n ∈ N,

where we have used the special values Cl2n(2π) = 0 and Cl2n+1(2π) = ζ(2n+ 1).

Note 5.6. The method presented in this section reduces the evaluation of all even-
weight Tornheim sums to the evaluation of the integrals Um,n, defined in (5.12).
The expansion (5.22) and the formula

(5.30)

∫ 1

0

qn log Γ(q) dq =
1

n+ 1

⌊
n+1

2 ⌋
∑

k=1

(−1)k

(

n+ 1

2k − 1

)

(2k)!

k(2π)2k
[δζ(2k) − ζ′(2k)]

− 1

n+ 1

⌊
n
2 ⌋
∑

k=1

(−1)k

(

n+ 1

2k

)

(2k)!

2(2π)2k
ζ(2k + 1) +

log
√

2π

n+ 1
,

(with δ = 2 log
√

2π+γ, where γ is Euler constant) given as (6.14) in [4], reduces the
evaluation of Tornheim sums to the evaluation of the integrals Xm,n, introduced in
(5.2). The result described in Theorem 2.3 appears from transforming the explicit
representation (2.6) in Theorem 2.2 by the methods presented in this section. The
details are left to the reader.

Note 5.7. The value

(5.31) X0,n = (−1)⌊n/2⌋ n!

(2π)n

∫ 1

0

log Γ(q)Cln+1(2πq) dq

can be obtained from the integrals
∫ 1

0

log Γ(q) sin(2πkq) dq =
A+ log k

2πk
,

∫ 1

0

log Γ(q) cos(2πkq) dq =
1

4k
,

where A = log(2π) + γ, with γ the Euler constant. This appears in [8] 6.443.1 and
6.443.3. It follows that

(5.32) X0,n = (−1)⌊n/2⌋ n!

(2π)n
×
{

1
2π (Aζ(n+ 2) − ζ′(n+ 1)) , for n odd,
1
4ζ(n+ 2), for n even.

For our evaluations of even-weight Tornheim sums, we will only need the result for
n even.
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Example 5.8. This is a continuation of Example 4.1. We express here the sum
T (2, 0, 2) first in terms of the U -integrals. Theorem 2.2, with m = n = 2, gives

T (2, 0, 2) = ζ(2)2 − 1

2
ζ(4) − 4π2

[
∫ 1

0

A1(q)B2(q)K0(q)dq

+

∫ 1

0

A2(q)B1(q)K0(q)dq

]

.

The second integral is now modified to avoid the presence of the function A2(q).
Write K0(q) = (d/dq)K1(q), integrate by parts and use formulas (5.7) and (5.11)
to get

∫ 1

0

A2(q)B1(q)K0(q)dq = A2(1)B1(1)K1(1) −
∫ 1

0

A2(q)B0(q)K1(q)dq

− 2

∫ 1

0

A1(q)B1(q)K1(q)dq − 2

∫ 1

0

B2
1(q)K1(q)dq.

The new integral involving A2(q)B0(q)K1(q) can be dealt with in a similar manner,
to produce

∫ 1

0

A2(q)B1(q)K0(q) dq = A2(1)B1(1)K1(1) − 1

2
A2(1)B0(1)K2(1)

+

∫ 1

0

A1(q)B0(q)K2(q) dq − 2

∫ 1

0

A1(q)B1(q)K1(q) dq

+

∫ 1

0

B0(q)B1(q)K2(q) dq − 2

∫ 1

0

B2
1(q)K1(q) dq.

From (5.9) and (5.29) we see that the boundary terms calcel out and therefore the
Tornheim sum T (2, 0, 2) is given by

T (2, 0, 2) = ζ2(2) − ζ(4)/2 − 4π2
(

U∗
2,0 − 2U∗

1,1 + U∗
0,2 + V0,1,2 − 2V1,1,1

)

.

The expression for Vk,m,n shows that V0,1,2 = 2V1,1,1 = 1
12 log 2. Therefore, the sum

T (2, 0, 2) is expressed in terms of the U∗-integrals as

T (2, 0, 2) =
π4

45
− 4π2

(

U∗
2,0 − 2U∗

1,1 + U∗
0,2

)

.

The transformation from U∗
m,n to Um,n gives

T (2, 0, 2) =
π4

45
+

1

3
log(2π)

(

π2 log(2) + 9ζ(3)
)

− 4π2 (U2,0 − 2U1,1 + U0,2) .

The final transformation is to write Um,n in terms of Xm,n to obtain

(5.33) T (2, 0, 2) =
π4

45
− Y ∗

2,2,

where

(5.34) Y ∗
2,2 := 4π2 (X0,2 − 2X1,1 +X2,0) − 2ζ(3) log(2π).

Example 5.9. At weight 8, we consider first the value of

T (2, 0, 6) =
π8

8100
+

4π7

45
(2IAB(1, 6) + 6IAB(2, 5)) .
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Expressing the IAB integrals in terms of the U∗ integrals we find

2IAB(1, 6) + 6IAB(2, 5) =

− 2

π

(

U∗
0,6 − 6U∗

1,5 + 15U∗
2,4 − 20U∗

3,3 + 15U∗
4,2 − 6U∗

5,1 + U∗
6,0

)

,

and in terms of the U integrals:

2IAB(1, 6) + 6IAB(2, 5) =
1

2π
log(2π)

(

log(2)

21
− ζ(3)

2π2
− 15ζ(5)

2π4
+

315ζ(7)

2π6

)

− 2

π
(U0,6 − 6U1,5 + 15U2,4 − 20U3,3 + 15U4,2 − 6U5,1 + U6,0) .

Thus we obtain the representation

(5.35) T (2, 0, 6) =
π8

8100
+

2π6

45
log(2π)

(

log(2)

21
− ζ(3)

2π2
− 15ζ(5)

2π4
+

315ζ(7)

2π6

)

− 8π6

45
(U0,6 − 6U1,5 + 15U2,4 − 20U3,3 + 15U4,2 − 6U5,1 + U6,0) .

In terms of the Xm,n integrals we have

(5.36) T (2, 0, 6) =
π8

8100
− Y ∗

6,2,

where

(5.37) Y ∗
6,2 :=

8π6

45
(X0,6 − 6X1,5 + 15X2,4 − 20X3,3 + 15X4,2 − 6X5,1 +X6,0)

− 6ζ(7) log(2π).

Example 5.10. The other two Tornheim sums of weight 8 are T (3, 0, 5) and
T (4, 0, 4). They are given by

T (3, 0, 5) = − π8

18900
+ ζ(3)ζ(5) +

8π7

45
(5IAB(4, 3) + 3IAB(5, 2))

and

T (4, 0, 4) =
π8

14175
+

8π7

9
(IAB(3, 4) + IAB(4, 3)) ,

respectively.

Expressing the IAB integrals in terms of the X integrals we find

T (3, 0, 5) = − π8

18900
− 6ζ(3)ζ(5) − Y ∗

3,5,(5.38)

where

Y ∗
3,5 :=

32π6

9
(X0,6 − 3X1,5 + 3X2,4 −X3,3) − 15ζ(7) log(2π),(5.39)

and

T (4, 0, 4) =
π8

14175
− 4ζ(3)ζ(5) − Y ∗

4,4,(5.40)
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where

Y ∗
4,4 :=

8π6

3
(X0,6 − 4X1,5 + 6X2,4 − 4X3,3 +X4,2) − 20ζ(7) log(2π).(5.41)

Note 5.11. In the examples given above, the integrals Xk,l appear in a symmetric
form. This is a general feature, as stated in Theorem 2.3. Depending on the parity
of the integers m and n, the even-weight Tornheim sum T (m, 0, n) contains either
Ym,n or Yn,m, where

Ym,n :=
2(2π)m+n−2

m!(n− 2)!

m
∑

j=0

(−1)j

(

m

j

)

Xj,m+n−2−j .

There are linear relations among the integral Ym,n of fixed weight N := m + n.
These come from the linear relations among the Tornheim sums T (m, 0, n) of the
same weight, discussed in the next section. For example, the identity

T (2, 0, 6) + T (6, 0, 2) =
2

3
ζ(8)

gives

Y2,6 + Y6,2 = 12 log(2π)ζ(7) +
7

3
ζ(8) − 6ζ(3)ζ(5),

whereas

5T (6, 0, 2) + 2T (5, 0, 3) =
163

12
ζ(8) − 8ζ(3)ζ(5)

gives

5Y2,6 + 2Y5,3 = 60 log(2π)ζ(7) +
29

6
ζ(8) − 30ζ(3)ζ(5).

A systematic study of the integrals Ym,n will be presented elsewhere.

6. A systematic list of examples

Here we present a systematic evaluation of the Tornheim sums T (m, k, n) with
m, k, n ∈ N∪{0}. The sums are organized according to the weight N = m+k+n.
The conditions m+ n ≥ 2, k+ n ≥ 2 and N ≥ 3 are imposed for convergence. The
symmetry relation T (m, k, n) = T (k,m, n) is used to impose m ≥ k.

We use the notation ZN and Z0
N introduced in the introduction. Huard’s result

(1.4) allows us to evaluate any Tornheim sum in ZN in terms of the sums in Z0
N .

Before detailing a systematic algorithm to evaluate all the sums in ZN for a given
weight N and giving specific examples, we shall determine how many of the Torn-
heim sums in Z0

N , for a given even weight N , remain undetermined after using all
the known algebraic identities for these sums.

As we discussed in the introduction, two of the sums in Z0
N have known explicit

evaluations:

(6.1) T (0, 0, N) = ζ(N − 1) − ζ(N), N ≥ 3,

and

(6.2) T (1, 0, N − 1) =
1

2

[

(N − 1)ζ(N) −
N−2
∑

i=2

ζ(i)ζ(N − i)

]

, N ≥ 3.
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Euler proved that for m ≥ 2, n ≥ 2 the sums T (m, 0, n) satisfy the symmetrized
identity

(6.3) T (m, 0, n) + T (n, 0,m) = ζ(m)ζ(n) − ζ(m+ n),

so that only the case m ≥ n needs to be considered. In particular, for m = n we
find

(6.4) T (n, 0, n) =
1

2
ζ2(n) − 1

2
ζ(2n).

At even weight N , the previous identities leave exactly N/2− 2 Tornheim sums
of the type T (m, 0, n) unevaluated. In effect, the convergence conditions require
n ≥ 2, so that all the sums with m = N/2+1, N/2+2, . . . , N−2 are undetermined.
The remaining N/2− 2 unevaluated Tornheim sums are not all independent, since
they satisfy linear relations obtained by applying Huard’s identity (1.4) to some
special cases with known evaluations as, for instance,

T (m, k, 0) = ζ(m)ζ(k),(6.5)

T (m, k, 1) = (−1)m

{

m
∑

i=2

(−1)iζ(i)ζ(N − i)+

1

2

N−2
∑

i=2

ζ(i)ζ(N − i) − 1

2
(N + 1)ζ(N)

}

,(6.6)

or

T (m, 1, 1) =
1

2

(

(N + 1)ζ(N) −
N−2
∑

i=2

ζ(i)ζ(N − i)

)

.(6.7)

These results appear in [11]. As usual, N is the weight of the Tornheim sum in the
left hand side.

On the other hand, Granville [9] showed that the multiple zeta values defined in
(1.8) satisfy

(6.8)
∑

ζ(p1, p2, · · · , pg) = ζ(N),

where the sum is over all elements of Zg such that p1 + p2 + · · · + pg = N , with
pj ≥ 1 and p1 ≥ 2. In particular, when g = 2 we obtain

(6.9)
∑

m+n=N

T (m, 0, n) = ζ(N),

where the sum is over pairs (m,n) with m ≥ 1 and n ≥ 2.

Experimental observation. Not all of the relations stated above are linearly
independent. However, it is possible to show that all Tornheim sums in Z0

N for
weights N = 4 and N = 6 can be completely evaluated in terms of zeta values (the
details are provided at the end of this section). In the case of even weight N ≥ 8
the Tornheim sums can be expressed in terms of zeta values and a reduced number
of basis sums, which we choose as T (N − 2k, 0, 2k), with k = 1, . . . ,K, where K is
given by

(6.10) K =

⌊

N − 2

6

⌋
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In particular, we need only one basis sum for weights 8, 10 and 12; two for weights
14, 16 and 18, and three for weights 20, 22 and 24. The reader will find in [1] that
K given above is an upper bound for the number of Tornheim sums required.

Example 6.1. Indeed, for weight N = 8 we find that all sums in Z0
8 have either

explicit evaluations or can be expressed in terms of just T (6, 0, 2):

T (0, 0, 8) = ζ(7) − ζ(8),

T (1, 0, 7) = 5
4ζ(8) − ζ(3)ζ(5),

T (2, 0, 6) = 2
3ζ(8) − T (6, 0, 2),

T (3, 0, 5) = − 187
24 ζ(8) + 5ζ(3)ζ(5) + 5

2T (6, 0, 2),

T (4, 0, 4) = 1
12 ζ(8),

T (5, 0, 3) = 163
24 ζ(8) − 4ζ(3)ζ(5) − 5

2T (6, 0, 2).

Note that the identity (1.14) follows directly from these expressions.

Example 6.2. For weight N = 14 we can express all Tornheim sums as zeta values
plus the sums T (12, 0, 2) and T (10, 0, 4):

T (0, 0, 14) = ζ(13) − ζ(14),

T (1, 0, 13) = 11
4 ζ(14) − ζ(3)ζ(11) − ζ(5)ζ(9) − 1

2 ζ(7)2,

T (2, 0, 12) = 271
420 ζ(14) − T (12, 0, 2),

T (3, 0, 11) = − 35741
840 ζ(14) + 11ζ(3)ζ(11) + 16ζ(5)ζ(9) + 9ζ(7)2 + 11

2 T (12, 0, 2),

T (4, 0, 10) = 1
12ζ(14) − T (10, 0, 4),

T (5, 0, 9) = 40977
112 ζ(14) − 165

2 ζ(3)ζ(11) − 147ζ(5)ζ(9) − 345
4 ζ(7)2

+ 9
2T (10, 0, 4)− 165

4 T (12, 0, 2),

T (6, 0, 8) = − 20773
35 ζ(14) + 132ζ(3)ζ(11) + 240ζ(5)ζ(9) + 141ζ(7)2

− 6T (10, 0, 4) + 66T (12, 0, 2),

T (7, 0, 7) = 1
2ζ(7)2 − 1

2ζ(14),

T (8, 0, 6) = 16619
28 ζ(14) − 132ζ(3)ζ(11) − 240ζ(5)ζ(9) − 141ζ(7)2

+ 6T (10, 0, 4)− 66T (12, 0, 2),

T (9, 0, 5) = − 41089
112 ζ(14) + 165

2 ζ(3)ζ(11) + 148ζ(5)ζ(9) + 345
4 ζ(7)2

− 9
2T (10, 0, 4) + 165

4 T (12, 0, 2),

T (11, 0, 3) = 34901
840 ζ(14) − 10ζ(3)ζ(11) − 16ζ(5)ζ(9) − 9ζ(7)2

− 11
2 T (12, 0, 2).

We are now in a position to formulate a systematic and exhaustive algorithm
to evaluate all the Tornheim sums in ZN . The reader is invited to download
the Tornheim Mathematica 6.0 package developed by the authors, available at
http://www.math.tulane.edu/~vhm/packages.html. Most of the calculations in
this paper can be easily reproduced with the aid of this package.
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Algorithm. The process of determining the Tornheim sums T (m, k, n) proceeds
as follows.

Step 1. First catalogue all sums that have known explicit evaluations. All of these
cases appear in [11]. In this category we find:

The sums with third entry n = 0:

T (m, k, 0) =

∞
∑

r=1

∞
∑

s=1

1

rm sk
= ζ(m)ζ(k).(6.11)

The sums with third entry n = 1:

T (m, k, 1) = (−1)m

{

m
∑

i=2

(−1)iζ(i)ζ(N − i)+

1

2

N−2
∑

i=2

ζ(i)ζ(N − i) − 1

2
(N + 1)ζ(N)

}

,

(6.12)

where N = m+ k + 1 is the weight.

The sums of the type

T (1, 1, n) = (n+ 1)ζ(n+ 2) −
n
∑

i=2

ζ(i)ζ(n+ 2 − i).(6.13)

The following sums in Z0
N :

T (0, 0, n) = ζ(n− 1) − ζ(n),(6.14)

T (1, 0, n) =
1

2

(

nζ(n+ 1) −
n−1
∑

i=2

ζ(i)ζ(n + 1 − i)

)

,(6.15)

and the symmetric sum,

T (m, 0,m) =
1

2
ζ2(m) − 1

2
ζ(2m), m ≥ 2.(6.16)

For weight N = m+ n odd, the sum T (m, 0, n) is given by

(6.17) T (m, 0, n) = (−1)m

⌊n−1

2
⌋

∑

j=0

(

N − 2j − 1

m− 1

)

ζ(2j)ζ(N − 2j)

+ (−1)m

⌊m
2
⌋

∑

j=0

(

N − 2j − 1

n− 1

)

ζ(2j)ζ(N − 2j) − 1
2 ζ(N).

Step 2. If k 6= 0, use the reduction of Huard et al. given in (1.4) to reduce the
T (m, k, n) not covered by the previous step to a finite sum of Tornheim sums in Z0

N :
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(6.18)

T (m, k, n) =

m
∑

i=1

(

m+ k − i− 1

m− i

)

T (i, 0, N−i)+
k
∑

i=1

(

m+ k − i− 1

k − i

)

T (i, 0, N−i),

with N = m+ k + n.

Step 3. For N = m+ n ≤ 6 even and m, n ≥ 2, compute all the sums T (m, 0, n)
explicitly by solving the set of simultaneous equations obtained from: (a) applying
Huard’s reduction of the previous step to the identity (6.11), for all independent
pairs (m, k) with m+k = N ; (b) Euler’s identity (6.3); and using the known explicit
evaluations of the sums in Z0

N given in Step 1.

Step 4. For N = m+ n ≥ 8 even and m, n ≥ 2, we write all the sums T (m, 0, n)
in terms of the irreducible basis for weight N ,

(6.19)

{

T (N − 2k, 0, 2k), k = 1, . . . ,

⌊

N − 2

6

⌋}

.

Step 5. The irreducible sums of the previous step are evaluated in terms of the
integrals Xk,l using Theorem 2.3.

For a given even weight N = m + k + n, the whole process gives T (m, k, n)
as a finite sum (with rational coefficients) of the zeta values ζ(N) and ζ(N − 1),
products of two zeta values of the form ζ(j)ζ(N − j) with 2 ≤ j ≤ N − 2 and, for
N ≥ 8, a finite number of integrals the type Y ∗

2r,N−2r, where

(6.20) Y ∗
2r,N−2r := Y2r,N−2r + (−1)

N
2
−1

(

N − 2

2r − 1

)

ζ(N − 1) log 2π.

Definition 6.1. We say that (m, k, n) is an admissible triple if m ≥ k and m, k, n
satisfy the conditions m + n ≥ 2, k + n ≥ 2 and N ≥ 3 for the convergence of
T (m, k, n).

We present now the results for small weight N = m+ k+n. The cases of weight
3 and 4 are straightforward, as all admissible triples corresponds to cases where the
Tornheim sum has an explicit formula.

Weight 3

The admissible triples are (0, 0, 3), (1, 0, 2) and (1, 1, 1). We obtain

T (0, 0, 3) = ζ(2) − ζ(3),

T (1, 0, 2) = ζ(3),

T (1, 1, 1) = 2ζ(3),

directly from (6.1), (6.2) and (6.13), respectively. The reader will find in [3] many
proofs of the last identity.

Weight 4

The six admissible triples are

(0, 0, 4), (1, 0, 3), (1, 1, 2), (2, 0, 2), (2, 1, 1) and (2, 2, 0).
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We obtain

T (0, 0, 4) = ζ(3) − ζ(4) = ζ(3) − π4

90
,

T (1, 0, 3) =
1

2

(

3ζ(4) − ζ(2)2
)

=
1

4
ζ(4) =

π4

360
,

T (1, 1, 2) = 3ζ(4) − ζ(2)2 =
1

2
ζ(4) =

π4

180
,

T (2, 0, 2) =
1

2

(

ζ(2)2 − ζ(4)
)

=
3

4
ζ(4) =

π4

120
,

T (2, 1, 1) =
1

2

(

5ζ(4) − ζ(2)2
)

=
5

4
ζ(4) =

π4

72
,

T (2, 2, 0) = ζ(2)2 =
5

2
ζ(4) =

π4

36
,

directly from (6.1), (6.2), (6.13), (6.16), (6.12) and (6.11), respectively.

The methods developed here produce the result

(6.21) T (2, 0, 2) =
π4

45
+ 2 log(2π)ζ(3) − Y2,2.

It follows that

(6.22) Y2,2 =
π4

72
+ 2 log(2π)ζ(3).

As a consequence of this, we obtain the definite integral

∫ 1

0

(

2π2B2(q)Cl1(2πq) − 2πB1(q)Cl2(2πq) −B0(q)Cl3(2πq)
)

log Γ(q) dq

=
π4

144
+ log(2π)ζ(3),

where
B0(q) = 1, B1(q) = q − 1/2, B2(q) = q2 − q + 1/6,

and

Cl1(2πq) =

∞
∑

k=1

cos 2πkq

k
, Cl2(2πq) =

∞
∑

k=1

sin 2πkq

k2
, Cl3(2πq) =

∞
∑

k=1

cos 2πkq

k3
.

Considering that from (5.32) we also know that

(6.23)

∫ 1

0

log Γ(q)Cl3(2πq) dq =
1

4
ζ(4) =

π4

360
,

we also find

(6.24)

∫ 1

0

(

2π2B2(q)Cl1(2πq) − 2πB1(q)Cl2(2πq)
)

log Γ(q) dq

=
7π4

720
+ log(2π)ζ(3).

Not your average integral.

We state next the values of the Tornheim sums T (m, k, n) of even weight N ≥
6. The formulas are the direct output of the algorithms presented here, the only
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reductions used are those given at the beginning of this section. The reader will
observe that the final expresions contain a single even value of the Riemann zeta
function. This is artificial. For instance, the value

T (4, 2, 0) = 7
4 ζ(6),

should be written as

T (4, 2, 0) = ζ(4)ζ(2),

as in (6.11). This latter representation would be more helpful in the search for a
closed-form expression for the Tornheim sums. However, at this point, we have
decided to minimize the number of zeta values appearing in the formulas.

Note 6.2. In the examples that follow, we do not list the Tornheim sum T (0, 0, N).
This is the only sum that explicitly contains the term ζ(N − 1).

Weight 6

In this example we give complete details, which will be omitted for higher
weights. The admissible triples are now (0, 0, 6), (1, 0, 5), (1, 1, 4), (2, 0, 4), (2, 1, 3),
(2, 2, 2), (3, 0, 3), (3, 1, 2), (3, 2, 1), (3, 3, 0), (4, 0, 2), (4, 1, 1) and (4, 2, 0).

A direct application of the identities and explicit formulas already discussed
give the following evaluations (in the formulas below we have replaced the product
ζ(2)ζ(4) by 7

4ζ(6)):

T (1, 0, 5) = 3
4ζ(6) − 1

2ζ
2(3), T (1, 1, 4) = 3

2ζ(6) − ζ2(3),

T (3, 0, 3) = − 1
2ζ(6) + 1

2ζ
2(3), T (3, 3, 0) = ζ2(3),

T (4, 1, 1) = 7
4ζ(6) − 1

2ζ
2(3), T (4, 2, 0) = 7

4ζ(6).

Huard’s expansion (1.4) gives

T (2, 1, 3) = 2T (1, 0, 5) + T (2, 0, 4),

T (2, 2, 2) = 4T (1, 0, 5) + 2T (2, 0, 4),

T (3, 1, 2) = 2T (1, 0, 5) + T (2, 0, 4) + T (3, 0, 3),

T (3, 2, 1) = 6T (1, 0, 5) + 3T (2, 0, 4) + T (3, 0, 3).

Euler’s identity (6.3),

T (2, 0, 4) + T (4, 0, 2) = ζ(2)ζ(4) − ζ(6) = 3
4ζ(6),

allows us to express T (2, 0, 4) in terms of T (4, 0, 2). This, together with the explicit
evaluations of T (1, 0, 5) and T (3, 0, 3), yields

T (2, 0, 4) = 3
4ζ(6) − T (4, 0, 2),

T (2, 1, 3) = 9
4ζ(6) − ζ2(3) − T (4, 0, 2),

T (2, 2, 2) = 9
2ζ(6) − 2ζ2(3) − 2T (4, 0, 2),

T (3, 1, 2) = 5
2ζ(6) − 1

2ζ
2(3) − 2T (4, 0, 2),

T (3, 2, 1) = 7ζ(6) − 5
2ζ

2(3) − 4T (4, 0, 2).
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Finally, Huard’s expansion (1.4) applied to the Tornheim sum T (4, 2, 0) = 7
4ζ(6)

produces another identity,

8T (1, 0, 5) + 4T (2, 0, 4) + 2T (3, 0, 3) + T (4, 0, 2) = 7
4ζ(6),

which permits to solve for the as yet undetermined value of T (4, 0, 2):

(6.25) T (4, 0, 2) = 25
12ζ(6) − ζ2(3).

This last result produces the explicit evaluation of all Tornheim sums of weight 6:

T (1, 0, 5) = 3
4ζ(6) − 1

2ζ
2(3), T (1, 1, 4) = 3

2ζ(6) − ζ2(3),

T (2, 0, 4) = − 4
3ζ(6) + ζ2(3), T (2, 1, 3) = 1

6ζ(6),

T (2, 2, 2) = 1
3ζ(6), T (3, 0, 3) = − 1

2ζ(6) + 1
2ζ

2(3),

T (3, 1, 2) = − 1
3ζ(6) + 1

2ζ
2(3), T (3, 2, 1) = 1

2ζ
2(3),

T (3, 3, 0) = ζ2(3), T (4, 0, 2) = 25
12ζ(6) − ζ2(3),

T (4, 1, 1) = 7
4ζ(6) − 1

2ζ
2(3), T (4, 2, 0) = 7

4ζ(6).

All the Tornheim sums of weight 6 have been evaluated.

Note 6.3. The problem of whether these sums are completely reduced is now equiv-
alent to whether ζ2(3) and ζ(6) = π6/945 are rationally related. It is conjectured
that ζ(3)/π3 is a transcendental number2.

Weight 8

The reduction algorithm described above begins by applying Huard’s reduction
procedure to express every sum T (m, k, n), with N = m + k + n = 8, in terms of
the N − 2 = 6 sums

(6.26) {T (1, 0, 7), T (2, 0, 6), T (3, 0, 5), T (4, 0, 4), T (5, 0, 3), T (6, 0, 2) }
with k = 0. For example,

(6.27) T (5, 2, 1) = 10T (1, 0, 7) + 5T (2, 0, 6) + 3T (3, 0, 5) + 2T (4, 0, 4) + T (5, 0, 3).

We use the shorthand notation T (5, 2, 1) = [10, 5, 3, 2, 1, 0]. The table below gives
all the coefficients corresponding to the 15 Tornheim sums of weight 8 with k 6= 0.

T (1, 1, 6) = [2, 0, 0, 0, 0, 0] , T (2, 1, 5) = [2, 1, 0, 0, 0, 0] ,

T (2, 2, 4) = [4, 2, 0, 0, 0, 0] , T (3, 1, 4) = [2, 1, 1, 0, 0, 0] ,

T (3, 2, 3) = [6, 3, 1, 0, 0, 0] , T (3, 3, 2) = [12, 6, 2, 0, 0, 0] ,

T (4, 1, 3) = [2, 1, 1, 1, 0, 0] , T (4, 2, 2) = [8, 4, 2, 1, 0, 0] ,

T (4, 3, 1) = [20, 10, 4, 1, 0, 0] , T (4, 4, 0) = [40, 20, 8, 2, 0, 0] ,

T (5, 1, 2) = [2, 1, 1, 1, 1, 0] , T (5, 2, 1) = [10, 5, 3, 2, 1, 0] ,

T (5, 3, 0) = [30, 15, 7, 3, 1, 0] , T (6, 1, 1) = [2, 1, 1, 1, 1, 1] ,

T (6, 2, 0) = [12, 6, 4, 3, 2, 1] .

2The authors wish to thank W. Zudilin for this information.
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Therefore every Tornheim sum T (m, k, n) has been expressed in terms of the set

(6.28) {T (i, 0, N − i) : 1 ≤ i ≤ N − 2}.
The value T (1, 0, N − 1) is given in (6.2) and T (N/2, 0, N/2) appears in (6.4).
Moreover, Euler’s relation (6.3) reduces the number of unknown Tornheim sums to
N/2− 2. In the case N = 8 the two unknowns are T (6, 0, 2) and T (5, 0, 3). Among
the 15 sums discussed above, there are three with last index equal to 0, namely
T (6, 2, 0), T (5, 3, 0) and T (4, 4, 0). Each one of them produces an equation in the
unknowns T (6, 0, 2) and T (5, 0, 3) coming from the evaluation

(6.29) T (m, k, 0) = ζ(m)ζ(k).

For instance, the case T (4, 4, 0) gives

(6.30) 5T (6, 0, 2) + 2T (5, 0, 3) =
163

12
ζ(8) − 8ζ(3)ζ(5).

This is the same relation among these sums obtained by Huard in (1.14). Unfortu-
nately, the sums T (6, 2, 0) and T (5, 3, 0) yield the same relation, so we are unable
to produce an analytic expression for all Tornheim sums of weight 8, free of an
unevaluated integral.

We conclude that every Tornheim sum of weight 8 is a rational linear combination
of the set

(6.31) G8 := {ζ(8), ζ(3)ζ(5), T (6, 0, 2)}.
The table shows the corresponding coefficients:

T (1, 0, 7) =
[

5
4 ,−1, 0

]

T (1, 1, 6) =
[

5
2 ,−2, 0

]

T (2, 0, 6) =
[

2
3 , 0,−1

]

T (2, 1, 5) =
[

19
6 ,−2,−1

]

T (2, 2, 4) =
[

19
3 ,−4,−2

]

T (3, 0, 5) =
[

− 187
24 , 5,

5
2

]

T (3, 1, 4) =
[

− 37
8 , 3,

3
2

]

T (3, 2, 3) =
[

41
24 ,−1,− 1

2

]

T (3, 3, 2) =
[

41
12 ,−2,−1

]

T (4, 0, 4) =
[

1
12 , 0, 0

]

T (4, 1, 3) =
[

− 109
24 , 3,

3
2

]

T (4, 2, 2) =
[

− 17
6 , 2, 1

]

T (4, 3, 1) =
[

7
12 , 0, 0

]

T (4, 4, 0) =
[

7
6 , 0, 0

]

T (5, 0, 3) =
[

163
24 ,−4,− 5

2

]

T (5, 1, 2) =
[

9
4 ,−1,−1

]

T (5, 2, 1) =
[

− 7
12 , 1, 0

]

T (5, 3, 0) = [0, 1, 0]

T (6, 0, 2) = [0, 0, 1] T (6, 1, 1) =
[

9
4 ,−1, 0

]

T (6, 2, 0) =
[

5
3 , 0, 0

]

.

The results derived in this paper give us the remaining unevaluated Tornheim
sum T (6, 0, 2) in terms of the integral Y ∗

2,6 as

(6.32) T (6, 0, 2) = 7
6ζ(8) − 6ζ(3)ζ(5) − Y ∗

2,6.
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Therefore, the generating set for Tornheim sums of weight 8 can also be taken
as

(6.33) G∗
8 := {ζ(8), ζ(3)ζ(5), Y ∗

2,6}.

Weight 10

For weight 10, the algorithm follows step by step the previous case. We find that
all Tornheim sums in Z0

10 are generated by the set

(6.34) G10 := {ζ(10), ζ2(5), ζ(3)ζ(7), T (8, 0, 2)}.
For example,

T (3, 2, 5) = − 103
40 ζ(10) + ζ2(5) + ζ(3)ζ(7) + 1

2T (8, 0, 2).

According to Theorem 2.3, the remaining unevaluated Tornheim sum T (8, 0, 2) can
be expressed in terms of the integral Y ∗

2,8 as

(6.35) T (8, 0, 2) = 23
20ζ(10) − 8ζ(3)ζ(7) − 4ζ(5)2 + Y ∗

2,8.

In particular, we may also use the generating set

(6.36) G∗
10 := {ζ(10), ζ2(5), ζ(3)ζ(7), Y ∗

2,8}.

Generating set for Tornheim sums of even weight

The same algorithm described above can be used to produce a generating set for
the Tornheim sums of even weight N . Except for T (0, 0, N) = ζ(N − 1) − ζ(N),
every such sum is a rational linear combination of the elements of the set

(6.37)

{

ζ(N), ζ(j)ζ(N − j) : j odd , 3 ≤ j ≤ 2⌊N − 1

4
⌋ + 1

}

and, for N ≥ 8, one must also include the collection of integrals

(6.38)

{

Y ∗
2r,N−2r : 1 ≤ r ≤

⌊

N − 2

6

⌋}

,

where where Y ∗
2r,N−2r is defined in (1.22).

The smallest weight for which one requires two basis Tornheim sums is 14. In
this case the generating set is

(6.39) G14 := {ζ(14), ζ2(7), ζ(5)ζ(9), ζ(3)ζ(11), T (12, 0, 2), T (10, 0, 4)}.
The evaluation of T (12, 0, 2) and T (10, 0, 4) according to Theorem 2.3 gives

T (12, 0, 2) = 481
420 ζ(14) − 12ζ(3)ζ(11) − 12ζ(5)ζ(9) − 6ζ(7)2 + Y ∗

2,12,

T (10, 0, 4) = 7
12ζ(14) − 120ζ(3)ζ(11) − 60ζ(5)ζ(9) − 20ζ(7)2 + Y ∗

4,10,

with

Y ∗
2,12 = Y2,12 + 12ζ(13) log 2π,

Y ∗
4,10 = Y4,10 + 220ζ(13) log 2π.

In particular, we may also use the generating set

(6.40) G∗
14 := {ζ(14), ζ2(7), ζ(5)ζ(9), ζ(3)ζ(11), Y ∗

2,12, Y
∗
4,10}.
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Note 6.4. In [1] the reader will find the sums

(6.41) σh(s, t) :=

∞
∑

n=1

n−1
∑

k=1

1

ks

1

nt
,

that can be expressed as

(6.42) σh(s, t) = ζ(s)ζ(t) − ζ(s+ t) − T (t, 0, s).

The authors analyze a system of equations for the sums σh(s, t) with the weight
w := s + t fixed. For w odd, the system has full rank and they obtain Huard’s
expression for the Tornheim sums. In the case w = 2n even, they establish that the
dimension of the null space is ⌊(n− 1)/3⌋, so every sum can be expressed in terms
of this number of basis elements. In our case, N = n/2, thus the expected number
of generators for all Tornheim sums of weight N is at most ⌊(N − 2)/6⌋. The fact
that the set

(6.43) {T (N − 2r, 0, 2r) : 1 ≤ r ≤ ⌊(N − 2)/6⌋}
can be used to generate all Tornheim sums (aside from the usual product of zeta
values) will follow from a careful analysis of the identities generated by the relations
T (m,n, 0) = ζ(m)ζ(n). We leave the details for the ambitious reader. The fact
that these sums are linearly independent is beyond our reach.

7. Conclusions

We have discussed an algorithm that evaluates all the Tornheim sums

(7.1) T (m, k, n) :=

∞
∑

r=1

∞
∑

s=1

1

rm sk (r + s)n
,

of a given even weight N := m + k + n, as rational linear combinations of the
value ζ(N), products of zeta values ζ(j)ζ(N − j) with j odd in the range 3 ≤ j ≤
2⌊N−1

4 ⌋ + 1 and the integrals

(7.2)

{

Y ∗
2r,N−2r : 1 ≤ r ≤

⌊

N − 2

6

⌋}

,

where

(7.3) Y ∗
m,n :=

2(2π)m+n−2

m!(n− 2)!

m
∑

j=0

(−1)j

(

m

j

)

Xj,m+n−2−j

+ (−1)N/2−1

(

N − 2

m− 1

)

ζ(N − 1) log 2π,

and the integral Xk,l is defined by

(7.4) Xk,l := (−1)⌊l/2⌋ l!

(2π)l

∫ 1

0

log Γ(q)Bk(q)Cll+1(2πq) dq.

Here Bk is the Bernoulli polynomial and Cl is the Clausen function.

All the Tornheim sums of a given even weight N can be expressed in terms of
zeta values and a reduced number of basis sums of the type T (N − 2r, 0, 2r), with
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r = 1, . . . ,
⌊

N−2
6

⌋

. These sums, in turn, can themselves be expressed in terms of
zeta values and the integral Y ∗

2r,N−2r, according to Theorem 2.3:

(7.5) T (N − 2r, 0, 2r) = (−1)N/2−1Y ∗
2r,N−2r + ζ(2r)ζ(N − 2r) − 1

2
ζ(N)

−
N/2−2
∑

j=1

(

N − 2 − 2j

2r − 1

)

ζ(2j + 1)ζ(N − 1 − 2j).

Our results may perhaps be used to develop fast numerical codes to compute
even weight Tornheim sums to high accuracy. Since the whole family of Tornheim
sums of a given weight can be expressed in terms of zeta values and a small basis of
Tornheim sums, it is enough to compute the basis sums to the required accuracy.
This will involve the numerical calculation of the Y integrals.

For example, of the 46 admissible triples at weight N = 12, 30 give Tornheim
sums that depend on the value of the single T (10, 0, 2). This sum is given by

(7.6) T (10, 0, 2) = −Y ∗
2,10 − 10ζ(5)ζ(7) − 10ζ(3)ζ(9) + 792

691ζ(12).

A 30-digit precision Mathematica calculation of the integral Y ∗
2,10 gives

(7.7) T (10, 0, 2) = 0.645 324 784 017 496 594 071 783 081 476 . . . .
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