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Abstract. A sequence of coefficients that appeared in the evaluation of a

rational integral has been shown to be unimodal. An alternative proof is
presented.

1. Introduction

The polynomial

(1.1) Pm(a) =

m∑
`=0

d`(m)a`

with

(1.2) d`(m) = 2−2m
m∑
k=`

2k
(

2m− 2k

m− k

)(
m+ k

m

)(
k

`

)
made its appearance in [1] in the evaluation of the quartic integral

(1.3)

∫ ∞
0

dx

(x4 + 2ax2 + 1)m+1
=

π

2m+3/2(a+ 1)m+1/2
Pm(a).

Properties of the sequence of numbers {d`(m)} are discussed in [10]. Among them
is the fact that this is a unimodal sequence. Recall that a sequence of real numbers
{x0, x1, · · · , xm} is called unimodal if there exists an index 0 ≤ j ≤ m such that
x0 ≤ x1 ≤ · · · ≤ xj and xj ≥ xj+1 ≥ · · ·xm. The sequence is called logconcave if
x2j ≥ xj−1xj+1 for 1 ≤ j ≤ m− 1. It is easy to see that if a sequence is logconcave
then it is unimodal [14].

The sequence {d`(m)} was shown to be unimodal in [2] by an elementary argu-
ment and it was conjectured there to be logconcave. This conjecture was established
by M. Kauers and P. Paule [9] using four recurrence relations found using a com-
puter algebra approach. W. Y. Chen and E. X. W. Xia [6] introduced the notion
of ratio-monotonicity for a sequence {xm}:

(1.4)
x0

xm−1
≤ x1
xm−2

≤ · · · ≤ xi
xm−1−i

≤ · · · ≤
xbm2 c−1
x
m−bm2 c

≤ 1.

The results in [6] show that {d`(m)} is a ratio-monotone sequence and, as can
be easily checked, this implies the logconcavity of {d`(m)}. The logconcavity of
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2 T. AMDEBERHAN ET AL

{d`(m)} also follows from the minimum conjecture stated in [11]: let b`(m) =
22md`(m). The function

(m+ `)(m+ 1− `)b2`−1(m) + `(`+ 1)b2`(m)− `(2m+ 1)b`−1(m),

defined for 1 ≤ ` ≤ m, attains its minimum at ` = m with value 22mm(m+1)
(
2m
m

)2
.

This has been proven in [7], providing an alternative proof of the logconcavity of
{d`(m)}.

Further study of the sequence {d`(m)} are defined in terms of the operator

(1.5) L ({xk}) =
{
x2k − xk−1xk+1

}
.

For instance, {xk} is logconcave simply means L ({xk}) is a nonnegative sequence.
The sequence is called i-logconcave if Lj ({xk}) is a nonnegative sequence for 0 ≤
j ≤ i. A sequence that is i-logconcave for every i ∈ N is called infinitely logconcave.

Conjecture 1.1. The sequence {d`(m)} is infinitely logconcave.

There is a strong connection between the roots of a polynomial P (x) and ordering
properties of its coefficients. For instance, if P (x) has only real negative zeros, then
P is logconcave (see [14] for details). Therefore, the expansion of (x + 1)n shows
that the binomial coefficients form a logconcave sequence. P. Brändén [3] showed
that if P (x) = a0 + a1x+ · · ·+ anx

n, with aj ≥ 0 has only real and negative roots,
then the same is true for

(1.6) P1(x) = a20 + (a21 − a0a2)x+ · · ·+ (a2n−1 − an−2an)xn.

This implies that the binomial coefficients are infinitely logconcave. This approach
fails with the sequence {d`(m)} since the polynomial Pm(a) has mostly non-real
zeros. On the other hand, Brändén conjectured and W. Y. C. Chen et al [5] proved

that Qm(x) =

m∑
`=0

d`(m)

`!
x` and Rm(x) =

m∑
`=0

d`(m)

(`+ 2)!
x` have only real zeros. These

results imply that Pm(a) in (1.1) is 3-logconcave.
The goal of this paper is to present an improved version of the original proof of

the theorem

Theorem 1.2. The sequence {d`(m)} is unimodal.

The proof of Theorem 1.2 given in [2] is based on the difference

(1.7) ∆d`(m) = d`+1(m)− d`(m).

A simple calculation shows that

(1.8) ∆d`(m) =
1

22m

(
m+ `

m

) m∑
k=`

2k
(

2m− 2k

m− k

)(
m+ k

m+ `

)
× k − 2`− 1

`+ 1
.

For
⌊
m
2

⌋
≤ ` ≤ m− 1, the inequality

(1.9) k − 2`− 1 ≤ k − 2
⌊m

2

⌋
− 1 ≤ k −m ≤ 0

shows that ∆d`(m) < 0 since the term for k = ` has a strictly negative contribution.
In the range 0 ≤ ` <

⌊
m
2

⌋
, the difference ∆d`(m) > 0. This is equivalent to

(1.10)
2∑̀
k=`

2k(2`+1−k)

(
2m− 2k

m− k

)(
m+ k

m+ `

)
<

m∑
k=2`+2

2k(k−2`−1)

(
2m− 2k

m− k

)(
m+ k

m+ `

)
.
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This establishes the following result.

Lemma 1.1. The inequality (1.10) implies Theorem 1.2.

The required inequality (1.10) is valid in an even stronger form, obtained by re-
placing k − 2`− 1 on the right hand side of (1.10) by 1 to produce

(1.11)

2∑̀
k=`

2k(2`+ 1− k)

(
2m− 2k

m− k

)(
m+ k

m+ `

)
<

m∑
k=2`+2

2k
(

2m− 2k

m− k

)(
m+ k

m+ `

)
,

and then made even stronger by replacing the sum on the right hand side of (1.11)
by its last term. Therefore, if

(1.12)

2∑̀
k=`

2k(2`+ 1− k)

(
2m− 2k

m− k

)(
m+ k

m+ `

)
< 2m

(
2m

m+ `

)
,

then ∆d`(m) > 0. This last inequality is now written as

(1.13) Sm,` :=

2∑̀
k=`

(
m− `
m− k

)(
m+ k

2k

)(
2m

2k

)−1
× 2`+ 1− k

2m−k
< 1.

This proves the following statement.

Lemma 1.2. The inequality (1.13) implies Theorem 1.2.

In [2], the proof of (1.13) is divided into two parts: first

Theorem 1.3. For fixed m ∈ N and 0 ≤ ` <
⌊
m
2

⌋
, the sum Sm,` is increasing in `.

and then

Theorem 1.4. The maximal sum S
m,

⌊
m−1
2

⌋ is strictly less than 1. For m even,

the maximal sum S2m,m−1 is given by

(1.14) Tm := S2m,m−1 =

m+1∑
r=2

(
2r

r

)(
m+ 1

r

)
(r − 1)

2r
(
4m
r

) ,
with a similar expression for m odd.

Note. It is clear that Theorems 1.3 and 1.4 imply (1.13). Lemma 1.2 then com-
pletes the proof of Theorem 1.2.

Theorems 1.3 and 1.4 were established in [2] by some elementary estimates. The
goal of the present work is to present a new proof of Theorem 1.4. This is given in
Section 2. Section 3 contains a proof based on a hypergeometric representation of
Tm. Section 4 shows that Tm converges to the value

(1.15) lim
m→∞

m+1∑
r=2

(
2r

r

)(
m+ 1

r

)
(r − 1)

2r
(
4m
r

) = 1− 1√
2
∼ 0.292893.

This limit was incorrectly conjectured in [2] to be 1− ln 2 ∼ 0.306853. The authors
have failed to produce a proof of Theorem 1.3 by the automatic techniques devel-
oped in [12]. These methods yield recurrences for the summands in (1.13), but it is
not possible to conclude from them that Sm,` is increasing. These automatic meth-
ods do succeed in producing a proof that the sequence {Tm : m ≥ 2} is increasing.
The details are presented in the last section.
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2. The bound on Tm

The result stated in Theorem 1.4 is equivalent to the bound

(2.1) Tm :=

m+1∑
r=2

(
2r

r

)(
m+ 1

r

)
(r − 1)

2r
(
4m
r

) < 1, for all m ≥ 1.

A direct proof of this result is given next. Section 3 presents a proof based on a
hypergeometric representation of Tm.

Theorem 2.1. The inequality Tm < 1 holds for m ≥ 1.

Proof. First, it is shown by induction that for m fixed and 2 ≤ r ≤ m+ 1

(2.2) am(r) :=

(
2r

r

)(
m+ 1

r

)
≤ bm(r) :=

(
4m

r

)
.

If r = 2: bm(2)− am(2) = 5m(m− 1) ≥ 0. Now observe that

bm(r + 1)

bm(r)
−am(r + 1)

am(r)
=

4m− r
r + 1

−2(2r + 1)(m+ 1− r)
(r + 1)2

=
2(m− 1) + 3r(r − 1)

(r + 1)2
> 0.

This gives the inductive step written as

bm(r)
bm(r + 1)

bm(r)
> am(r)

am(r + 1)

am(r)
.

The inequality am(r) < bm(r) now yields

Tm =

m+1∑
r=2

am(r)

bm(r)

r − 1

2r
<

m+1∑
r=2

r − 1

2r
= 1− m+ 2

2m+1
< 1.

�

3. A hypergeometric representation of Tm

This section provides a hypergeometric representation of

(3.1) Tm =

m+1∑
r=2

(
2r

r

)(
m+ 1

r

)
(r − 1)

2r
(
4m
r

)
and an alternative proof of Theorem 1.4.

Proposition 3.1. The sequence Tm is given by

(3.2) Tm = 1− 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣2)+
m+ 1

4m
2F1

( 3
2 ,−m

1− 4m

∣∣∣∣2) .
Proof. Since

(
m

k

)
=

(−1)k(−m)k
k!

, it follows that

(
m+1
r

)(
4m
r

) =
(−1−m)r

(−4m)r
. This

relation and
(
1
2

)
r

= (2r)!/(22r r!) give

(3.3) Tm =

m+1∑
r=2

(
1
2

)
r

r!

(r − 1)2r(−1−m)r
(−4m)r

.
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Therefore

Tm = −
m+1∑
r=2

(
1
2

)
r

(−1−m)r2r

(−4m)r r!
+

m+1∑
r=2

(
1
2

)
r

(−1−m)r2r

(r − 1)! (−4m)r

= 1 +
m+ 1

4m
−

m+1∑
r=0

(
1
2

)
r

(−1−m)r2r

(−4m)r r!
+
m+ 1

4m

m+1∑
r=2

(
1
2

)
r

(−1−m)r2r

(−4m)r (r − 1)!

4m

m+ 1

= 1−
m+1∑
r=0

(
1
2

)
r

(−1−m)r

(−4m)r

2r

r!
+
m+ 1

4m

{
1 +

m+1∑
r=2

(
1
2

)
r

2r

(r − 1)!

4m

m+ 1

(−1− 4m)r
(−4m)r

}

= 1− 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣2)+
m+ 1

4m

m+1∑
r=2

(
1
2

)
r

2r

(r − 1)!

4m

m+ 1

(−1−m)r
(−4m)r

= 1− 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣2)+
m+ 1

4m

m∑
r=0

(
3
2

)
r

r!

2r (−m)r
(1− 4m)r

= 1− 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣2)+
m+ 1

4m
2F1

( 3
2 ,−m

1− 4m

∣∣∣∣2) .
�

The next result provides an integral representation for Tm.

Proposition 3.2. The sequence Tm is given by

(3.4) Tm =
3(m+ 1)

16(4m− 1)

∫ 2

0

t 2F1

( 5
2 , 1−m
2− 4m

∣∣∣∣t) dt.

Proof. Integrate by parts and use

(3.5)
d

dt
2F1

(
a, b

c

∣∣∣∣t) =
ab

c
2F1

(
a+ 1, b+ 1

c+ 1

∣∣∣∣t)
to produce∫ 2

0

t 2F1

( 5
2 , 1−m
2− 4m

∣∣∣∣t) dt =
4(4m− 1)

3m
2F1

( 3
2 ,−m

1− 4m

∣∣∣∣2)−2(4m− 1)

3m

∫ 2

0
2F1

( 3
2 ,−m

1− 4m

∣∣∣∣t) dt.

The last integral is evaluated using (3.5) to write

2F1

( 3
2 ,−m

1− 4m

∣∣∣∣t) =
8m

m+ 1

d

dt
2F1

( 1
2 ,−1−m
−4m

∣∣∣∣t)
and the result follows. �

The next result provides a bound for the integrand in Proposition 3.2.

Proposition 3.3. Let n ∈ N, n ≥ 2 and 0 ≤ t ≤ 2. Then∣∣∣∣2F1

( 5
2 , 1−m
2− 4m

∣∣∣∣t)∣∣∣∣ ≤ 9
√

3(3− t)−5/2.

Proof. The hypergeometric function is given by

2F1

( 5
2 , 1−m
2− 4m

∣∣∣∣t) =

m−1∑
k=0

(
5

2

)
k

(1−m)k
(2− 4m)k

.
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The bound

(3.6)
(1−m)k
(2− 4m)k

≤ 1

3k

follows directly from the observation that bk(m) = 3k(1−m)k/(2− 4m)k satisfies
b0(m) = 1 and it is decreasing in k. Indeed,

(3.7)
bk+1(m)

bk(m)
=

3(1−m+ k)

2− 4m+ k
< 1.

Then (3.6) gives

2F1

( 5
2 , 1−m
2− 4m

∣∣∣∣t) ≤
m−1∑
k=0

(
5

2

)
k

tk

3kk!

≤
∞∑
k=0

(
5

2

)
k

(t/3)k

k!

= 1F0

( 5
2

−

∣∣∣∣ t3
)
.

The evaluation of the final hypergeometric sum comes from the binomial theorem

(3.8) 1F0

(
a

−

∣∣∣∣z) = (1− z)−a, for |z| < 1.

�

The bound in Theorem 1.4 is now obtained.

Corollary 3.4. For m ∈ N, the sequence Tm satisfies Tm < 1.

Proof. It is easy to compute that T1 = 1
4 . For m ≥ 2, observe that

(3.9)
3(m+ 1)

16(4m− 1)
=

3

16

(
1

4
+

5/4

4m− 1

)
≤ 9

112

and thus

(3.10) Tm ≤
9

112

∫ 2

0

9
√

3 t dt

(3− t)5/2
=

27

28
< 1.

�

Note 3.5. This inequality completes the proof that {d`(m)} is unimodal.

4. The limiting behavior of Tm

This section is devoted to establish that Tm → 1− 1/
√

2 as m→∞. Section 5
proves that this convergence is monotone increasing, thus improving the bound in
Theorem 2.1 to Tm < 1− 1/

√
2 < 3/10.

Theorem 4.1. The sequence Tm satisfies

(4.1) lim
m→∞

Tm = 1− 1√
2
.

The arguments will employ the classical Tannery theorem. This is stated next,
a proof appears in [4], page 136.
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Theorem 4.2. (Tannery) Assume αk := lim
m→∞

αk(m) satisfies |αk(m)| ≤Mk with
∞∑
k=0

Mk <∞. Then lim
m→∞

m∑
k=0

αk(m) =

∞∑
k=0

αk.

Three proofs of Theorem 4.1 are presented here. In each one of them, the ar-
gument reduces to an exchange of limits. The first one is based on the integral
representation of Tm and it uses bounded convergence theorem and Tannery’s the-
orem. The second one deals directly with the hypergeometric sums and it employs
Tannery’s theorem for passing to the limit in a series. A similar argument can be
employed in the third proof.

Proposition 4.3. Assume 0 ≤ t < 4 is fixed. Then

(4.2) lim
m→∞ 2F1

( 5
2 , 1−m
2− 4m

∣∣∣∣t) = 1F0

( 5
2

−

∣∣∣∣ t4
)

=
32

(4− t)5/2
.

First proof. Start with

(4.3) 2F1

( 5
2 , 1−m
2− 4m

∣∣∣∣t) =

m−1∑
k=0

(
5
2

)
k

(1−m)k

(2− 4m)k

tk

k!

and observe that

(4.4)
(1−m)k
(2− 4m)k

=

k−1∏
j=0

m− 1− j
4m− 2− j

→ 1

4k

as m→∞. Therefore

(4.5) lim
m→∞ 2F1

( 5
2 , 1−m
2− 4m

∣∣∣∣t) =

∞∑
k=0

(
5
2

)
k

k!

(
t

4

)k

= 1F0

( 5
2

−

∣∣∣∣ t4
)
.

The hypergeometric sum is now evaluated using (3.8).

The passage to the limit in (4.5) uses the Tannery’s theorem. In this case

(4.6) αk(m) =

(
5
2

)
k

(1−m)k

(2− 4m)k

tk

k!

satisfies

lim
m→∞

αk(m) = lim
m→∞

(
5

2

)
k

tk

k!

(
1
m − 1

) (
2
m − 1

)
· · ·
(

k
m − 1

)(
2
m − 4

) (
3
m − 1

)
· · ·
(
1+k
m − 4

)
=

(
5

2

)
k

tk

k! 4k

exists. This limit is denoted by αk.
The result now follows from the bound

(4.7) |αk(m)| ≤Mk :=

(
5

2

)
k

tk

k! 3k
,

and the sum

(4.8)

∞∑
k=0

Mk =

∞∑
k=0

(
5

2

)
k

tk

k! 3k
=

(
1− t

3

)−5/2
.
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valid for 0 ≤ t ≤ 2. Tannery’s theorem gives

(4.9) lim
m→∞

m−1∑
k=0

αk(m) =

∞∑
k=0

αk =

∞∑
k=0

(
5

2

)
k

tk

k! 4k
=

(
1− t

4

)−5/2
.

The expression in Proposition 3.2, the bound (3.6) and Proposition 3.3 give, via
the dominated convergence theorem, the value

lim
m→∞

Tm = lim
m→∞

3(m+ 1)

16(4m− 1)

∫ 2

0
2F1

( 5
2 , 1−m
2− 4m

∣∣∣∣t) t dt(4.10)

=
3

64

∫ 2

0
1F0

( 5
2

−

∣∣∣∣ t4
)
dt

=
3

64

∫ 2

0

32t

(4− t)5/2
dt

= 1− 1√
2
.

This completes the first proof.

Second proof. The limiting value of Tm is now obtained using the hypergeometric
representation (3.2). It amounts to proving

(4.11) lim
m→∞ 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣2)− m+ 1

4m
2F1

( 3
2 ,−m

1− 4m

∣∣∣∣2) =
1√
2
.

The contiguous relation [13], page 28,

(4.12) 2F1

(
a+ 1, b

c

∣∣∣∣z) = 2F1

(
a, b

c

∣∣∣∣z)+
bz

c
2F1

(
a+ 1, b+ 1

c+ 1

∣∣∣∣z)
is used with a = 1

2 , b = −1−m, c = −4m and z = 2 to obtain

2F1

( 3
2 ,−1−m
−4m

∣∣∣∣2) = 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣2)+
m+ 1

2m
2F1

( 3
2 ,−m

1− 4m

∣∣∣∣2)
and this gives
(4.13)

(m+ 1)

4m
2F1

( 3
2 ,−m

1− 4m

∣∣∣∣2) =
1

2

(
2F1

( 3
2 ,−1−m
−4m

∣∣∣∣2)− 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣2)) .
Thus if suffices to prove

(4.14) lim
m→∞

3 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣2)− 2F1

( 3
2 ,−1−m
−4m

∣∣∣∣2) =
√

2.

A direct calculation shows that

3 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣2)− 2F1

( 3
2 ,−1−m
−4m

∣∣∣∣2) =

m+1∑
k=0

αk(m)

with

(4.15) αk(m) =

m+1∑
k=0

[
3
(
1
2

)
k
−
(
3
2

)
k

]
(−1−m)k2k

(−4m)k k!
.
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The question is now reduced to justifying passing to the limit in

(4.16) lim
m→∞

m+1∑
k=0

αk(m) =

∞∑
k=0

lim
m→∞

αk(m)

since

(4.17) lim
m→∞

αk(m) =
(
3
(
1
2

)
k
−
(
3
2

)
k

) 1

k! 2k

and
∞∑
k=0

lim
m→∞

αk(m) =

∞∑
k=0

(
3
(
1
2

)
k
−
(
3
2

)
k

) 1

k! 2k

= 3

∞∑
k=0

(
1
2

)
k

2−k

k!
−
∞∑
k=0

(
3
2

)
k

2−k

k!

= 3(1− 1/2)−1/2 − (1− 1/2)−3/2

=
√

2.

The last step is justified using Tannery’s theorem. In the present case αk(m),
given in (4.15), satisfies

(4.18) |αk(m)| ≤
(
3
(
1
2

)
k

+
(
3
2

)
k

) 2k

k!

(−1−m)k
(−4m)k

.

The proof of the inequality

(4.19)
(−1−m)k

(−4m)k
≤ 1

3k
,

is similar to the proof of (3.6). This is then used to verify that the hypothesis of
Tannery’s theorem are satisfied. The details are omitted.

Third proof. This is based on the analysis of a function that resembles the formula
for Tm.

Proposition 4.4. For 0 ≤ x < 1 define

(4.20) Wm(x) =

m+1∑
r=0

(
2r

r

)(
m+ 1

r

)(
4m

r

)−1
xr.

Then

(4.21) lim
m→∞

Wm(x) =
1√

1− x
and lim

m→∞

d

dx
Wm(x) =

1

2(1− x)3/2
.

Proof. Note that the sum defining Wm(x) can be extended to infinity since
(
m+1
r

)
has compact support. The proof now follows from

Wm(x) =

∞∑
r=0

(
2r

r

)(x
4

)r r∏
i=1

(
1− i−2

m

1− i−1
m

)
→

∞∑
r=0

(
2r

r

)(x
4

)r
=

1√
1− x

,

as m → ∞. The passage to the uniform limit is justified by Weierstrass M-test or
dominated convergence theorem. The second assertion is immediate. �

Corollary 4.5. The sequence Tm satisfies

(4.22) lim
m→∞

Tm = 1− 1√
2
.



10 T. AMDEBERHAN ET AL

Proof. This follows from the identity

(4.23) Tm = lim
x→1/2

1

2

d

dx
Wm(x)−Wm(x) + 1.

�

Note 4.6. The function Wm(x) can be expressed in hypergeometric form as

(4.24) Wm(x) = 2F1

( 1
2 ,−1−m
−4m

∣∣∣∣4x) .
5. The monotonicity of Tm

This last section describes the convergence of T (m) to its limit given in (4.1).

Theorem 5.1. The sequence Tm is monotone increasing.

Proof. Let

(5.1) F (r,m) =

(
2r

r

)(
m+ 1

r

)
r − 1

2r
(
4m
r

) .
The proof is based on a recurrence involving F (r,m) that is obtained by the WZ-
technology as developed in [12]. Input the hypergeometric function F (k,m) into
WZ-package with summing range from r = 2 to r = n+1. The recurrence relations
that come as the output is

(5.2) anTn − bnTn+1 + cnTn+2 + dn = 0,

where

an = 7195230 + 87693273n+ 448856568n2 + 1263033897n3 + 2147597568n4

+2279791176n5 + 1502157312n6 + 586779648n7 + 121208832n8 + 9732096n9

bn = 9661680 + 123557904n+ 651005760n2 + 1865031680n3 + 3206772480n4

+3428727552n5 + 2272235520n6 + 894167040n7 + 187269120n8 + 15499264n9

cn = 3265920 + 41472576n+ 217055232n2 + 618806528n3 + 1062162432n4

+1139030016n5 + 762052608n6 + 305528832n7 + 66060288n8 + 5767168n9

dn = −799470− 5607945n− 14906040n2 − 16808745n3 − 2987520n4 + 9906360n5

+8025600n6 + 1858560n7.

Note that bn = an + cn + dn, then (5.2) becomes

(5.3) anTn − (an + cn + dn)Tn+1 + cnTn+2 + dn = 0,

which is written as

(5.4) an(Tn − Tn+1) + dn(1− Tn+1) = cn(Tn+1 − Tn+2).

Theorem 2.1 shows that Tn < 1 and Lemma 5.2 below states that dn ≥ 0.
Therefore

(5.5) an(Tn − Tn+1) ≤ cn(Tn+1 − Tn+2).

Assume T is not monotone. Define N as the smallest positive integer such that

(5.6) TN > TN+1.

Then (5.5) implies

(5.7) aN (TN − TN+1) ≤ cN (TN+1 − TN+2)
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and since aN > 0, cN > 0, it follows that TN+1 > TN+2. Iteration of this argument
shows that the sequence {Tn : n ≥ N} is monotonically decreasing.

Let δN = TN − TN+1 > 0, then (5.7) yields

(5.8) TN+1 − TN+2 ≥
aN
cN

δN .

Iterating this procedure gives

(5.9) TN+p − TN+p+1 > δN

p−1∏
i=0

aN+i

cN+i
, for every p ∈ N.

This inequality is now impossible as p → ∞, since the left-hand side converges to
0 in view of (4.1) and

(5.10) lim
n→∞

an
cn

=
27

16

showing that the right-hand side blows up. �

It remains to establish the sign of dm. This is done next.

Lemma 5.2. The sequence dm is nonnegative for m ≥ 2.

Proof. Simply observe that

dn+2 = 814627800 + 2803521195n+ 3780146130n2 + 2680435095n3

1098008880n4 + 262332600n5 + 34045440n6 + 1858560n7

is a polynomial with positive coefficients. �

The proof of monotonicity of Tm is complete.

6. An inequality for hypergeometric functions

The hypergeometric representation for the sequence Tm and the monotonicity of
Tm give using (4.13),

2F1

( 3
2 ,−m− 2

−4m− 4

∣∣∣∣2)− 2F1

( 3
2 ,−m− 1

−4m

∣∣∣∣2) >

3

[
2F1

( 1
2 ,−m− 2

−4m− 4

∣∣∣∣2)− 2F1

( 1
2 ,−m− 1

−4m

∣∣∣∣2)] .
This is the special case x = 1

2 of the inequality given below.

Theorem 6.1. The inequality

2F1

( 3
2 ,−m− 2

−4m− 4

∣∣∣∣4x)− 2F1

( 3
2 ,−m− 1

−4m

∣∣∣∣4x) >

3

[
2F1

( 1
2 ,−m− 2

−4m− 4

∣∣∣∣4x)− 2F1

( 1
2 ,−m− 1

−4m

∣∣∣∣4x)]
holds for x ≥ 1

2 .

An automatic proof of this result is given in [8]. A traditional proof has escaped
the authors.
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7. Conclusion

A sequence of numbers, originally found in the evaluation of a rational integral,
had been shown to be unimodal. A crucial point in the original proof consisted of
establishing an upper bound of an associated sequence {Tm}. Several arguments
are given for the validity of this bound. Moreover, it is shown that Tm is a monotone
sequence.
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