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Abstract
A conjecture of G. McGarvey for the 2-adic valuation of the Schenker sums is

established. These sums are n! times the sum of the first n+1 terms of the series for
en. A certain analytic expression for the p-adic valuation of these sums is provided
for a class of primes. Some combinatorial interpretations (using rooted trees) are
furnished for identities that arose along the way.

1. Introduction

Let 0 != x ∈ Q. The Fundamental Theorem of Arithmetic implies the prime fac-
torization |x| =

∏
p p

np where the product is over all primes and for some np ∈ Z
(all but finitely many being zero). The p-adic valuation of x, denoted νp(x), is the
exponent np in the power of p in the above factorization. For example, ν2(2k) = k
and ν2(2k − 1) = 0. By convention, νp(0) = +∞.

Given a sequence of positive integers an and a prime p, determining a closed form
for the sequence of p-adic valuations νp(an) often presents interesting challenges.
Legendre’s classical formula for the factorials

νp(n!) =
∞∑

j=0

⌊
n

pj

⌋
(1.1)

appears in elementary textbooks. If n ∈ N is expanded in base p and sp(n) denotes
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the sum of its p-ary digits, then the alternative form

νp(n!) =
n− sp(n)

p− 1
(1.2)

follows directly from (1.1).

The presence of a compact formula, such as (1.2), facilitates the analysis of
arithmetical properties of a given sequence an. For instance, it follows directly
from (1.2) that

νp

(
2n

n

)
=

2sp(n)− sp(2n)

p− 1
(1.3)

and in particular, for p = 2, this yields

ν2

(
2n

n

)
= s2(n), (1.4)

in view of s2(2n) = s2(n). This provides an elementary proof that the central
binomial coefficients

(
2n
n

)
are always even, and exactly divisible by 2 if and only if

n is a power of 2.

Introduce the sequence of positive integers

an =
n∑

k=0

n!

k!
nk. (1.5)

One immediately recognizes that an
n! equals the nth partial sum of the exponential

en. The sequence an appeared in a paper by S. Ramanujan [10] where he proposes
the following problem:

Show that
1

2
en = 1 +

n

1!
+

n2

2!
+ · · ·+ nn

n!
θ, (1.6)

for some θ in the range between 1
2 and 1

3 .

The relation (1.6) may be expressed in the form

an =
1

2
n!en + (1− θ)nn. (1.7)

The sequence {an} resurfaced in Exercise 1.2.11.3.18 of [8] in an urn problem,

There are n balls in an urn. How many selections with replacement are made,
on average, if we stop when we reach a ball already selected?

with answer an/nn. In relation to this question, D. Knuth introduces the functions

Q(n) = 1+
n− 1

n
+
(n− 1)(n− 2)

n2
+· · · and R(n) = 1+

n

n+ 1
+

n2

(n+ 1)(n+ 2)
+· · · ,
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with Q(n)+R(n) = n!en/nn. To derive asymptotics of the function Q(n), Ramanu-
jan resorts to the integral representation

Q(n) =

∫ ∞

0
e−x

(
1 +

x

n

)n−1
dx. (1.8)

More details on an asymptotic analysis of the sequence an can be found in [2] and
[5].

The sequence an is listed as A063170 on OEIS and the name Schenker sum is
given to it. The comments there include the integral representation

an =

∫ ∞

0
e−x(x+ n)n dx, (1.9)

due to M. Somos and the following conjecture by G. McGarvey for the 2-adic val-
uation of an.

Conjecture 1.1. For n ∈ N, we have

ν2(an) =

{
1 if n is odd

n− s2(n) if n is even.
(1.10)

A primary focus of this paper is to establish the above conjecture and extend the
discussion to odd primes.

2. The Proof

The proof starts with an elementary observation.

Lemma 2.1. Suppose A(x) is a polynomial with integer coefficients. Assume every
coefficient is divisible by r. Then, the integer

∫ ∞

0
A(x)e−x dx (2.1)

is divisible by r.

Proof. Write A(x) = a0 + a1x+ · · ·+ anxn and observe that

∫ ∞

0
A(x)e−x dx =

n∑

j=0

aj j! (2.2)

is clearly divisible by r.
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The previous result shows that if A(x) ≡ B(x) mod r, then
∫ ∞

0
A(x)e−x dx ≡

∫ ∞

0
B(x)e−x dx mod r. (2.3)

For the proof of the conjecture, the integral representation (1.9) will be useful.
The process consists of two cases based on the parity of n.

Case 1: Suppose n is odd, say n = 2m+ 1. Now write n = 1+ 2n1 + · · ·+ 2rnr in
base 2 and raise n+ x ≡ 1 + x mod 2 to the n-th power to produce

(n+ x)n ≡ (x + 1)
r∏

i=1

(1 + x)2
ki ≡ (1 + x)

r∏

i=1

(1 + x2ki ) ≡ 1 + x+O(xw) mod 2,

with w ≥ 2. Fermat’s little theorem was employed in the second congruence. Then

an =

∫ ∞

0
(n+ x)ne−x dx

≡
∫ ∞

0
(1 + x+O(xw)) e−x dx mod 2

≡
∫ ∞

0
(1 + x)e−x dx = 2 ≡ 0 mod 2.

It follows that an is even. But an is not divisible by 4. Indeed, if m is even

an ≡
∫ ∞

0
(1 + x)e−x dx = 2 ≡ 2 mod 4 (2.4)

and for m odd,

an ≡
∫ ∞

0
(3 + x)3e−x dx = 78 ≡ 2 mod 4. (2.5)

This proves the conjecture when n odd.

Case 2: Suppose n is even, say n = 2m. Then

a2m =

∫ ∞

0
(2m+ x)2me−x dx (2.6)

=
2m∑

k=0

(
2m

k

)
(2m)2m−k

∫ ∞

0
xke−k dx

=
2m∑

k=0

(
2m

k

)
(2m)2m−k k!.

Let tk be the summand in the last sum. Then 2mtk+1 = (2m − k)tk and if
j = 2m− k, this becomes

2mt2m−j+1 = jt2m−j . (2.7)
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This recurrence is now utilized in expressing the coefficients ti in terms of t2m and
also in analyzing the 2-adic valuation of each term in the sum for a2m. For example,
j = 1 yields t2m−1 = 2mt2m, therefore

ν2(t2m−1) = 1 + ν2(m) + ν2(t2m) > ν2(t2m). (2.8)

Similarly, j = 2 yields t2m−2 = 2m2t2m from which it follows that ν2(t2m−2) >
ν2(t2m) and j = 3 gives the relation 4m3t2m = 3t2m−3 and ν2(t2m−3) > ν2(t2m) is
obtained. In general

Lemma 2.2. For 1 ≤ j ≤ 2m, the inequality ν2(t2m−j) > ν2(t2m) holds.

Proof. Define uj = t2m−j . Then (2.7) gives

2muj−1 = juj. (2.9)

From here it follows that

uj =
2m

j
uj−1 =

2m

j
· 2m

j − 1
uj−2 (2.10)

and iterating produces

uj =
(2m)j

j!
t2m. (2.11)

Now write
j! = 2ν2(j!)O∗(j) = 2j−s2(j)O∗(j), (2.12)

with O∗(j) representing an odd number, to obtain

O∗(j)uj = 2s2(j)mjt2m. (2.13)

This gives
ν2(uj) = s2(j) + jν2(m) + ν2(t2m) > ν2(t2m), (2.14)

completing the proof as required.

Note 2.3. Lemma 2.2 implies ν2(a2m) = ν2(t2m) = ν2(n!) = n − s2(n). This
completes the analysis of Case 2 and establishes Conjecture 1.1.

3. The p-Adic Valuations for p an Odd Prime

In view of the results established in the previous section, it is natural to consider the
question of what happens when p is an odd prime, i.e., is there a simple expression
for νp(an) when p != 2 is a prime? The present section gives partial answers to this
problem.
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Proposition 3.1. Let p be an odd prime and assume n = pm for some m ∈ N.
Then

νp(an) =
n− sp(n)

p− 1
. (3.1)

Proof. Consider the integral expression

apm =
pm∑

k=0

(
pm

k

)
(pm)pm−k

∫ ∞

0
xke−x dx =

pm∑

k=0

(
pm

k

)
(pm)pm−kk! (3.2)

and let

tm,p(k) =

(
pm

k

)
(pm)pm−k k! (3.3)

be the summand in (3.2). Observe that tm,p(mp) = (pm)!. Pursuant, the case
p = 2, suppose that

νp(tm,p(k)) > νp(tm,p(pm)) = νp(n!). (3.4)

Then

νp(apm) = νp(n!) =
n− sp(n)

p− 1
, (3.5)

as claimed.

The proof of (3.4) begins with the computation of the ratio of two consecutive
terms tm,p to produce the relation

pm tm,p(k + 1) = (pm− k)tm,p(k). (3.6)

The proof then proceeds as in the case p = 2.

The next result is a crucial reduction towards the modular arithmetic employed
in the computation of νp(an).

Proposition 3.2. Let p be a prime and n = pm+ r with 0 < r < p. Then p|an if
and only if p|ar.

Proof. The reduction

(x+ n)n ≡ (x+ r)pm (x+ r)r ≡ (xpm + rpm)(x+ r)r ≡ (xpm + rm)(x+ r)r mod p,
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is due the fact that p divides
(pm

k

)
for any 0 < k < pm. This implies

an =

∫ ∞

0
(x + n)ne−x dx

≡
∫ ∞

0
(xpm + rm)(x+ r)re−x dx

=
r∑

j=0

(
r

j

)
rr−j

∫ ∞

0
(xpm + rm)xje−x dx

=
r∑

j=0

(
r

j

)
rr−j [(pm+ j)! + rmj!]

≡
r∑

j=0

(
r

j

)
rm+r−j j!

≡
r∑

j=0

(
r

j

)
rm+j (r − j)!

≡ rm
r∑

j=0

r!

j!
rj

≡ rmar mod p.

The assertion follows.

Before embarking on the more general study, it is worthwhile to consider some
toy examples (small primes). The reader will hopefully find these illustrative of the
potential subtleties and obstacles.

Example 3.3. Let p = 3. Proposition 3.1 gives

ν3(a3n) =
1

2
(3n− s3(n)). (3.7)

The remaining two cases are established by Proposition 3.2. Assume n = 3m+ r
with r = 1, 2. Then 3|an if and only if 3|ar. Neither a1 = 2 nor a2 = 10 are
divisible by 3, and therefore 3 does not divide an.

In summary,

ν3(an) =

{
1
2 (n− s3(n)) if n ≡ 0 mod 3

0 if n !≡ 0 mod 3.
(3.8)

Example 3.4. Let p = 5. This brings in the first difficult problem. Start with the
simpler cases. Proposition 3.1 ensures that

ν5(a5n) =
1

4
(n− s5(n)). (3.9)
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By Proposition 3.2 and since none of the numbers a1 = 2, a3 = 78, a4 = 824 is
divisible by 5, the following holds

ν5(an) = 0 if n ≡ 1, 3, 4 mod 5. (3.10)

The remaining case ν5(a5n+2) requires a closer look. A preliminary discussion is
presented in the next section.

Example 3.5. Let p = 7. Because the first six numbers a1 = 2, a3 = 78, a4 =
824, a5 = 10970, a6 = 176112 are not divisible by 7, it follows that

ν7(an) =

{
1
6 (n− s7(n)) if n ≡ 0 mod 7

0 if n !≡ 0 mod 7.
(3.11)

A direct computation of the values of aj modulo 11 shows that aj is not divisible
by 11 for 1 ≤ j < 11. Therefore

ν11(an) =

{
1
10 (n− s11(n)) if n ≡ 0 mod 11

0 if n !≡ 0 mod 11.
(3.12)

The case p = 13 is similar to p = 5 since 13 divides a3 = 78.

4. Schenker Primes

The results established in the previous sections determine the valuation νp(an) for
a class of prime numbers. The primes not completely covered by those methods are
fall under a special category as defined below.

Definition 4.1. A prime p is called a Schenker prime if p divides ar for some value
r in the range 1 ≤ r ≤ p− 1.

The result is summarized in the next theorem.

Theorem 4.2. Let p be a prime and assume that p is not a Schenker prime. Then

νp(an) =

{
1

p−1 (n− sp(n)) if n ≡ 0 mod p

0 if n !≡ 0 mod p.
(4.1)

Example 4.3. The prime p = 17 is not a Schenker prime. The factorization of the
numbers ar, for 1 ≤ r ≤ 16 is

a1 = 2 a2 = 2 · 5
a3 = 2 · 3 · 13 a4 = 23 · 103
a5 = 2 · 5 · 1097 a6 = 24 · 32 · 1223
a7 = 2 · 5 · 7 · 41 · 1153 a8 = 27 · 556403
a9 = 2 · 34 · 149 · 163 · 439 a10 = 28 · 52 · 7281587
a11 = 2 · 11 · 9431 · 6672571 a12 = 210 · 35 · 53 · 1443613
a13 = 2 · 13 · 179 · 339211523363 a14 = 211 · 72 · 595953719897
a15 = 2 · 36 · 53 · 317 · 13103 a16 = 215 · 13 · 179 · 116371 · 11858447
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The prime p = 17 does not appear in any of these factorizations confirming that
it is not a Schenker prime. In accord with Theorem 4.2, the 17-adic valuation of
the sequence an is explicit:

ν17(an) =

{
1
16 (n− s17(n)) if n ≡ 0 mod 17

0 if n !≡ 0 mod 17.
(4.2)

Example 4.4. The prime 5 is a Schenker prime because 5 divides a2 = 10. Similarly
37 is a Schenker prime since 37 divides a25. The list of all Schenker primes up to
200 is

{5, 13, 23, 31, 37, 41, 43, 47, 53, 59, 61, 71, 79, 101, 103,
107, 109, 127, 137, 149, 157, 163, 173, 179, 181, 191, 197, 199}. (4.3)

Note 4.5. The valuation ν5(an) is not obvious or as simple, so finding an an-
alytic/explicit formula for it stands as an open question. The description given
below is purely experimental and no proofs are available at the moment. The only
rigorous result is Example 3.4, which determines the value of ν5(an) except for
indices congruent to 2 modulo 5.

The indices of the form 5n + 2 are first divided according to the parity of n
modulo 5. Symbolic computations show that

ν5(a5n+2) = 1 for n !≡ 2 mod 5. (4.4)

Therefore it is now required to consider indices of the form

m1 = 5(5n+ 2) + 2 = 52n+ 5 · 2 + 2. (4.5)

Then it is observed that

ν5(a52n+5·2+2) = 2 for n !≡ 0 mod 5, (4.6)

leading to indices of the form

m2 = 53n+ 5 · 2 + 2. (4.7)

Continuing this process, it is then observed that

ν5(a53n+5·2+2) = 3 for n !≡ 4 mod 5, (4.8)

leading to indices of the form

m3 = 54n+ 53 · 4 + 52 · 0 + 51 · 2 + 2, (4.9)

and also
ν5(a54n+53·2+5·2+2) = 4 for n !≡ 4 mod 5, (4.10)
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leading to
m4 = 55n+ 54 · 4 + 53 · 4 + 52 · 0 + 51 · 2 + 2. (4.11)

This process can be described in terms of the expansion of the index n in base 5 in
the form

n = x0 + x1 · 5 + x2 · 52 + x3 · 53 + x4 · 54 + · · · (4.12)

The results of Example 3.4 for ν5(an) are

x0 =






0 ν5(an) =
1
4 (n− s5(n))

1, 3, 4 ν5(an) = 0

2 ν5(an) depends on x1.

(4.13)

The next steps are

x0 = 2 and x1 =

{
!= 2 ν5(an) = 1

2 depends on x2,
(4.14)

and

x0 = 2, x1 = 2 and x2 =

{
!= 0 ν5(an) = 2

0 depends on x3,
(4.15)

and

x0 = 2, x1 = 2, x2 = 0 and x3 =

{
!= 4 ν5(an) = 3

4 depends on x4.
(4.16)

The next conjecture has been verified numerically, for the prime p = 5, up to
depth/level 10.

Conjecture 4.6. Assume the valuation ν5(an) is not determined by the first r digits
of n; that is x0, x1, · · · , xr−1 do not determine ν5(an). Then, among the 5 possible
values for xr, there is a single value for which the valuation is not determined by
x0, x1, · · · , xr−1, xr.

Note 4.7. Denote by dj the j-th exceptional digit in Conjecture 4.6. The list of
these digits begins with

d0 = 2, d1 = 2, d2 = 0, d3 = 4, d4 = 4. (4.17)

A similar conjecture has been proposed in [1] and [3] for the p-adic valuation of
Stirling numbers of the second kind. Conjecture 4.6 is rephrased using valuation
trees.

Tree construction. The tree starts with a top vertex v0 labeled n that represents
all of N. This top vertex forms the first level of the tree. The expansion of n in
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base 5 in (4.12) is employed in the description of this tree.

From the top vertex, form the second level consisting of 5 vertices connected to v0.
Each vertex corresponds to a value of x1 in the expansion of n in base 5. The figure
shows three types of vertices: those with x0 = 0 for which ν5(an) =

1
4 (n − s5(n))

(shown to the left of the tree), those with x0 != 0, 2 for which ν5(an) = 0 (shown at
the center) and finally those vertices with x0 = 2 for which the valuation ν5(an) is
not determined by x0. In this form, each vertex represents a subset of N determined
by some property of the digits xi. Each vertex has a symbol indicating the type of
digit xi it represents (to be more precise all the properties determining this subset
is obtained by reading the path from the top vertex to the vertex in question) and
also the valuation ν5(an) for those indices n associated to the vertex.

n

x0 != 0,−2

0

x0 = 0
1
4

(
n− s5(n)

)
x0 = 2

ν5(an) =??

x1 != 2

1

x1 = 2

ν5(an) =??

x2 != 0

2

x2 = 0

ν5(an) =??

x3 != 4

3

x3 = 4

ν5(an) =??

The valuation tree for p = 5

The discussion that follows excludes the vertex corresponding to x0 = 0. The
valuation for the indices corresponding to this vertex are determined by Proposition
3.1.

Definition 4.8. A vertex is called terminal if the valuation is the same for all
indices associated to the vertex.

Example 4.9. All indices n associated to the vertex corresponding to x0 = 1 have
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valuation ν5(an) = 0; that is ν5(a5n+1) = 0. Therefore this vertex is terminal. On
the other hand, if n = 7 then

ν5(a7) = ν5(3309110) = 1 (4.18)

and
ν5(a17) = ν5(4845866591896268695010) = 3. (4.19)

Both indices 7 and 17 are associated to the vertex with x0 = 2 and they have
different valuation. Therefore this is not a terminal vertex.

Note 4.10. The first level consists of the vertex with x0 = 0, excluded from this
discussion, the three vertices with x0 = 1, 3, 4 (shown as one single vertex in the
tree), and the vertex with x0 = 2. This last vertex produces 5 new ones that
form the second level. These five vertices correspond to indices with x0 = 2 and
0 ≤ x1 ≤ 4. Each of them have a set of indices attached to them, for instance x1 = 2
correspond to indices of the form n = x0 +5x1+52m = 2+5 · 2+52m = 12+25m.
This describes the construction of the valuation tree: non-terminal vertices produce
5 new vertices at the next level.

Definition 4.11. The tree constructed above, extended naturally by simply re-
placing 5 by a prime p, is called the valuation tree for p.

The structure of this valuation tree described in the next conjecture generalizes
Conjecture 4.6.

Conjecture 4.12. Assume p is a Schenker prime. Then each level of the valuation
tree for p contains a single non-terminal vertex.

5. The Combinatorics of an

The arithmetic properties of the sequence an discussed in the earlier sections are
based on the integral representation (1.9). In this section, the Abel-type identity
Theorem 5.1 gives an alternative binomial representation of an. There is an ex-
tensive literature on Abel’s identity and its numerous variants (see, for example,
[9] and its references). Here, we give two short direct proofs, one analytic and one
bijective.

Theorem 5.1. The following identity provides two different formulation for the
sequence an:

n∑

k=0

n!

k!
nk =

n∑

k=0

(
n

k

)
kk(n− k)n−k. (5.1)
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Proof. Define

An(t) = t
n∑

k=0

(
n

k

)
(t+ k)k−1(n− k)n−k (5.2)

Bn(t) =
n∑

k=0

n!

(n− k)!
(t+ n)n−k,

Cn(t) =
n∑

k=0

(
n

k

)
(t+ k)k(n− k)n−k.

The relation (t+ k)k = t(t+ k)k−1 + k(t+ k)k−1 gives

Cn(t) = An(t) + nCn−1(t+ 1). (5.3)

The value
An(t) = (t+ n)n (5.4)

follows directly from Abel’s identity

n∑

k=0

(
n

k

)
(t+ k)k−1(s− k)n−k =

(t+ s)n

t
, (5.5)

Then
Cn(t) = (t+ n)n + nCn−1(t+ 1), (5.6)

and it is easy to check that Bn also satisfies this recurrence. Since both Bn and Cn

have the same initial conditions, it follows that Bn(t) = Cn(t). The stated result
now comes from Bn(0) = Cn(0).

Note 5.2. A nice proof of Abel’s identity (5.5) appears in [4]. A nice combinatorial
interpretation may be found in [6, 7] with the following picturesque formulation.
Whereas the binomial identity (t + s)n =

∑n
k=0

(n
k

)
tksn−k counts functions f :

[n] → [t+ s] by the number of elements that map directly to [t], that is, by number
of elements i ∈ [n] for which f(i) ∈ [t], (5.5) counts these same functions by the
number of elements that ultimately map to [s + 1, s + t], that is, by number of
elements i ∈ [n] for which f◦f◦...◦f︸ ︷︷ ︸

m

(i) ∈ [s + 1, s + t] for some m ≥ 1 (assuming

s ≥ n so that all summands are nonnegative).

The identity Bn(t) = Cn(t) implies another well known identity.

Corollary 5.3.

n! =
n∑

r=0

(−1)r
(
n

r

)
(n− r)n. (5.7)
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Proof. Matching powers of t in Bn(t− n) = Cn(t− n) gives

n!

k!
= (−1)k

n∑

r=k

(−1)r
(
n

r

)(
r

k

)
(n− r)n−k (5.8)

and the special case k = 0 gives the result.

Note 5.4. An elementary combinatorial proof of (5.7) is obtained by counting all
the n! bijective functions on a set of n elements. The right-hand side employs the
inclusion-exclusion principle by excluding maps according to the number of elements
missed in the range.

Note 5.5. Theorem 5.1, after canceling some equal terms, is equivalent to the
identity,

n∑

k=2

n!

(n− k)!
nn−k =

n−1∑

k=1

(
n

k

)
kk(n− k)n−k (5.9)

for which we now give a combinatorial interpretation.

We will show that (5.9) counts a class of rooted trees in two different ways. Let
us say a vertex in a rooted tree is a descendant of an edge in the tree if the path
from the vertex to the root includes the edge. Define an ev-tree to be a rooted
vertex-labeled tree on [n] with a highlighted edge e and a marked descendant v of
e, as illustrated below with n = 9. Call the (unique) path starting at edge e and
ending at vertex v the critical path of an ev-tree.

8

2

9

7

4

1 3 6

5

e

v

An ev-tree

In the example, e = 74 (in blue) and v = 3 (in red). The descendants of e are
4, 1, 3, 6, 5 and the critical path is 7 → 4 → 3.

The left side of (5.9) counts ev-trees by the length k of the critical path as follows.
Choose the k vertices that occur on the critical path—

(n
k

)
choices. Form a forest

of trees on [n] rooted at these k vertices—knn−k−1 choices [11, Proposition 5.3.2].
Put a cycle structure on the k roots—(k − 1)! choices. Mark one of the vertices in
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the forest—n choices. Turn the cycle of roots into a path, r1 → r2 → · · · → rk,
by starting at the root of the tree containing the marked vertex. Ignoring the
orientation of edges in this path, we now have a tree rooted at the marked vertex.
Take e to be the edge r1r2 and v to be the vertex rk. This is the desired ev-tree
and by construction, there are

(
n
k

)
· knn−k−1 · (k − 1)! · n = n!

(n−k)!n
n−k of them.

On the other hand, the right side of (5.9) counts ev-trees by the number k of
descendants of e as follows. Choose the descendants of e—

(
n
k

)
choices—and form

a rooted tree on these vertices with one vertex colored blue—kk choices, because
Cayley’s formula says there are kk−1 rooted trees. Similarly, form a rooted tree on
the remaining n−k vertices with one vertex colored blue—(n−k)n−k choices. Now
join the two blue vertices with a blue edge and change the root of the first tree to
a red vertex. The result will form an ev-tree by taking the blue edge as e and the
red vertex as v.

Actually, identity (5.9) can be sharpened. Every term on the left side is obviously
divisible by n and it is a fact, not quite so obvious, that every term on the right is
also divisible by n. So we can divide by n to get another integer identity,

n∑

k=2

(n− 1)!

(n− k)!
nn−k =

n−1∑

k=1

1

n

(
n

k

)
kk(n− k)n−k. (5.10)

Basically the same interpretation works for (5.10): simply observe that incrementing
the vertex labels, i → i + 1 (mod n), in an ev-tree leaves the statistics “number
of descendants of the highlighted edge” and “length of the critical path” invariant,
and partitions the class of ev-trees on [n] into orbits, each of which has size n. So
just pick out the ev-tree in each orbit whose root is, say, 1. Note that this argument
provides a combinatorial proof that the summand on the right side of (5.10) is an
integer.

Note 5.6. The sums in (5.10) give (an)n≥1 = (1, 8, 78, 944, . . .), A000435, “the
sequence that started it all”. A comment on A000435 by Geoffrey Critzer says that
an, for n > 1, is the number of connected endofunctions on [n] with no fixed points,
that is, functions f : [n] → [n] with only one orbit of periodic points (connected)
whose length is ≥ 2 (no fixed points). In fact, ev-trees with root 1 are just another
way of looking at these endofunctions.
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