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T. Amdeberhan, O. R. Espinosa, V. H. Moll and A. Straub

1 Wallis’ infinite product for π

Among the earliest analytic expressions for π one finds two infinite products:
the first one given by Vieta [21] in 1593
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and the second by Wallis [22] in 1655

2

π
=

1 · 3
2 · 2 · 3 · 5

4 · 4 · 5 · 7
6 · 6 · 7 · 9

8 · 8 · · · . (1.1)

In this journal, T. Osler [15] has presented the remarkable formula
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This equation becomes Wallis’ product when p = 0 and Vieta’s formula as
p → ∞. It is surprising that such a connection between the two products was
not discovered earlier.

The collection [1] contains both original papers of Vieta and Wallis as well
as other fundamental papers in the history of π. Indeed, there are many good
historical sources on π. The text by P. Eymard and J. P. Lafon [6] is an excellent
place to start.

Wallis’ formula (1.1) is equivalent to

Wn :=

n
∏

k=1

(2k) · (2k)

(2k − 1) · (2k + 1)
=

24n

(

2n
n

) (

2n+1
n

)

(n + 1)
→ π

2
(1.2)

as n → ∞. This may be established using Stirling’s approximation

m! ∼
√

2πm
(m

e

)m

.

Alternatively, there are many elementary proofs of (1.2) in the literature. Among
them, [23] and [12] have recently appeared in this journal.
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Section 3 presents a proof of (1.2) based on the evaluation of the rational
integral

Gn :=
2

π

∫ ∞

0

dx

(x2 + 1)n
. (1.3)

This integral is discussed in the next section. The motivation to generalize (1.3)
has produced interesting links to symmetric functions from Combinatorics and
to one-loop Feynman diagrams from Particle Physics. The goal of this work is
to present these connections.

2 A rational integral and its trigonometric ver-

sion

The method of partial fractions reduces the integration of a rational function to
an algebraic problem: the factorization of its denominator. The integral (1.3)
correspondes to the presence of purely imaginary poles. See [3] for a treatment
of these ideas.

A recurrence for Gn is obtained by writing 1 = (x2+1)−x2 for the numerator
of (1.3) and integrating by parts. The result is

Gn+1 =
2n − 1

2n
Gn. (2.1)

Since G1 = 1 it follows that

Gn+1 =
1

22n

(

2n

n

)

. (2.2)

The choice of a new variable is one of the fundamental tools in the evaluation
of definite integrals. The new variable, if carefully chosen, usually simplifies
the problem or opens up unsuspected possibilities. Trigonometric changes of
variables are considered elementary because these functions appear early in
the scientific training. Unfortunately, this hides the fact that this change of
variables introduces a transcendental function with a multivalued inverse. One
has to proceed with care.

The change of variables x = tan θ in the definition (1.3) of Gn gives

Gn+1 =
2

π

∫ π/2

0

(cos θ)2n dθ.

In this context, the recurrence (2.1) is obtained by writing

(cos θ)2n = (cos θ)2n−2 − sin θ

2n − 1

d

dθ
(cos θ)2n−1

and then integrating by parts. Yet another recurrence for Gn is obtained by a
double-angle substitution in

Gn+1 =
2

π

∫ π/2

0

(

1 + cos 2θ

2

)n

dθ,
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and a binomial expansion (observe that the odd powers of cosine integrate to
zero). It follows that

Gn+1 = 2−n

⌊n/2⌋
∑

k=0

(

n

2k

)

Gk+1.

Thus, proving (2.2) is equivalent to the finite sum identity

⌊n/2⌋
∑

k=0

2−2k

(

n

2k

)(

2k

k

)

= 2−n

(

2n

n

)

. (2.3)

There are many possible ways to prove this identity. For instance, it is a perfect
candidate for the truly 21st century WZ-method [16] that provides automatic
proofs; or, as pointed out by M. Hirschhorn in [10], it is a disguised form of the
Chu-Vandermonde identity

∑

k≥0

(

x

k

)(

y

k

)

=

(

x + y

x

)

(2.4)

(which was discovered first in 1303 by Zhu Shijie). Namely, upon employing
Legendre’s duplication formula for the gamma function

Γ( 1
2 )Γ(2z + 1) = 22zΓ(z + 1)Γ(z + 1

2 )

the identity (2.3) rewrites as

∑

k≥0

(n
2

k

)(n
2 − 1

2

k

)

=

(

n − 1
2

n
2 − 1

2

)

.

This is a special case of (2.4). Another, particularly nice and direct, proof of
(2.3), as kindly pointed out by one of the referees, is obtained from looking at
the constant coefficient of

(

x

2
+

x−1

2
+ 1

)n

= 2−n
(

x1/2 + x−1/2
)2n

.

Remark 2.1. The idea of double-angle reduction lies at the heart of the rational
Landen transformations. These are polynomial maps on the coefficient of the
integral of a rational function that preserve its value. See [13] for a survey on
Landen transformations and open questions.

3 A squeezing method

In this section we employ the explicit expression for Gn, given in (2.2), to
establish Wallis’ formula (1.1). This approach is also contained in Stewart’s
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calculus text book [19] in the form of several guided exercises (45, 46, and 68 of
Section 7.1). The proof is based on analyzing the integrals

In :=

∫ π/2

0

(sin x)n dx.

The formula

I2n =

∫ π/2

0

(sin x)2n dx =
(2n − 1)!!

(2n)!!

π

2

follows from (2.2) by symmetry. Its companion integral

I2n+1 =

∫ π/2

0

(sin x)2n+1 dx =
(2n)!!

(2n + 1)!!

is of the same flavor. Here n!! = n(n− 2)(n− 4) · · · {1 or 2} denotes the double
factorial. The ratio of these two integrals gives

WnI2n/I2n+1 =
π

2

where Wn is defined by (1.2). The convergence of Wn to π/2 now follows from
the inequalities 1 ≤ I2n/I2n+1 ≤ 1 + 1/(2n). This in turn is equivalent to

2n

∫ π/2

0

(sin x)2n dx ≤ (2n + 1)

∫ π/2

0

(sin x)2n+1 dx.

The proof that I2n/I2n+1 ≤ 1 + 1/(2n) follows directly from the bound I2n ≤
I2n−1 and the recurrence (2n + 1)I2n+1 = 2nI2n−1. Alternatively, observe that
the function

f(s) = s

∫ π/2

0

(sin x)s dx

is increasing. This may be seen from the change of variables t = sin x and a
series expansion of the new integrand yielding

f ′(s) =

∞
∑

k=0

1

22k

(

2k

k

)

2k + 1

(2k + s + 1)2
> 0. (3.1)

Remark 3.1. Comparing the series (3.1) at s = 0 with the limit

f ′(0) = lim
s→0

f(s)

s
= lim

s→0

∫ π/2

0

sins x dx =
π

2

immediately proves
∞
∑

k=0

(

2k

k

)

2−2k

2k + 1
=

π

2
.

This value may also be obtained by letting x = 1
2 in the series

∞
∑

k=0

(

2k

k

)

x2k

2k + 1
=

arcsin2x

2x
.

The reader will find in [11] a host of other interesting series that involve the
central binomial coefficients.
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4 An example of Ramanujan and a generaliza-

tion

A natural generalization of Wallis’ integral (1.3) is given by

Gn(q) =
2

π

∫ ∞

0

n
∏

k=1

1

x2 + q2
k

dx, (4.1)

where q = (q1, q2, . . . , qn) with qk ∈ C. This notation will be employed through-
out. Similarly, qα is used to denote (qα

1 , qα
2 , . . . , qα

n). As the value of the integral
(4.1) is independent under a change of sign of the parameters qk, it is assumed
that Re qk > 0. Note that the integral Gn(q) is a symmetric function of q that
reduces to Gn in the special case q1 = . . . = qn = 1.

The special case n = 4 appears as Entry 13, Chapter 13, of B. Berndt’s
volume 2 of Ramanujan’s Notebooks [2], in the form1:

Example 4.1. Let q1, q2, q3 and q4 be positive real numbers. Then

2

π

∫ ∞

0

dx

(x2 + q2
1)(x2 + q2

2)(x2 + q2
3)(x2 + q2

4)
=

(q1 + q2 + q3 + q4)
3 − (q3

1 + q3
2 + q3

3 + q3
4)

3q1q2q3q4(q1 + q2)(q2 + q3)(q1 + q3)(q1 + q4)(q2 + q4)(q3 + q4)
.

Using partial fractions the following general formula for Gn(q) is obtained.
In the next section a representation in terms of Schur functions is presented.

Lemma 4.2. Let q = (q1, . . . , qn) be distinct and Re qk > 0. Then

Gn(q) =

n
∑

k=1

1

qk

n
∏

j=1

j 6=k

1

q2
j − q2

k

. (4.2)

Proof. Observe first that if b1, b2, . . . , bn are distinct then

n
∏

k=1

1

y + bk
=

n
∑

k=1

1

y + bk

n
∏

j=1

j 6=k

1

bj − bk
. (4.3)

Replacing y by x2 and bk by q2
k and using the elementary integral

2

π

∫ ∞

0

dx

x2 + q2
=

1

q

produces the desired evaluation of Gn(q).

1A minor correction from [2].
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Remark 4.3. Gn(q), as defined by (4.1), is a symmetric function in the qi’s
which remains finite if two of these parameters coincide. Therefore, the factors
qj − qk in the denominator of the right hand side of (4.2) cancel out. This
may be checked directly by combining the summands corresponding to j and
k. Alternatively, note that the right hand side of (4.2) is symmetric while
the critical factors qj − qk in the denominator combine to the antisymmetric
Vandermonde determinant. Accordingly, they have to cancel.

Example 4.4. The identities

2

π

∫ ∞

0

n+1
∏

j=1

1

x2 + j2
dx =

1

(2n + 1)n!(n + 1)!
,

2

π

∫ ∞

0

n+1
∏

j=1

1

x2 + (2j − 1)2
dx =

1

22n(2n + 1)(n!)2
,

2

π

∫ ∞

0

n
∏

j=1

1

x2 + 1/j2
dx =

2A(2n − 1, n − 1)
(

2n
n

)

may be deduced inductively from Lemma 4.2. Here, A(n, k) are the Eulerian
numbers which count the number of permutations of n objects with exactly k
descents. Recall that a permutation σ of the n letters 1, 2, . . . , n, here written as
σ(1)σ(2) . . . σ(n), has a descent at position k if σ(k) > σ(k + 1). For instance,
A(3, 1) = 4 because there are 4 permutations of 1, 2, 3, namely 1 3 2, 2 1 3, 2 3 1
and 3 1 2, which have exactly one descent.

The question of an explicit formula for the numerators appearing on the
right-hand side of (4.2) is discussed in the next section.

5 Representation in terms of Schur functions

The expression for Gn(q) developed in this section is given in terms of Schur
functions. The reader is referred to [4] for a motivated introduction to these
functions in the context of alternating sign matrices and to [17] for their role
in the representation theory of the symmetric group. Among the many equiv-
alent definitions for Schur functions, we now recall their definition in terms of
quotients of alternants. This way, we are able to associate a Schur function not
only to a partition but more generally to arbitrary vectors.

Here, a vector µ = (µ1, µ2, . . .) means a finite sequence of real numbers. µ
is further called a partition if µ1 ≥ µ2 ≥ . . . and all the parts µj are positive
integers. Write 1n for the partition with n ones, and denote with λ(n) the
partition

λ(n) = (n − 1, n − 2, . . . , 1).

Vectors and partitions may be added componentwise. In case they are of dif-
ferent length, the shorter one is padded with zeroes. For instance, one has
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λ(n + 1) = λ(n) + 1n. Likewise, vectors and partitions may be multiplied by
scalars. In particular, a · 1n is the partition with n a’s.

Fix n and consider q = (q1, q2, . . . , qn). Let µ = (µ1, µ2, . . .) be a vector of
length at most n. The corresponding alternant aµ is defined as the determinant

aµ(q) =
∣

∣q
µj

i

∣

∣

1≤i,j≤n
.

Again, µ is padded with zeroes if necessary. Note that the alternant aλ(n) is the
classical Vandermonde determinant

aλ(n)(q) =
∣

∣

∣
qn−j
i

∣

∣

∣

1≤i,j≤n
=

∏

1≤i<j≤n

(qi − qj).

The Schur function sµ associated with the vector µ can now be defined as

sµ(q) =
aµ+λ(n)(q)

aλ(n)(q)
.

If µ is a partition with integer entries this is a symmetric polynomial. Indeed,
as µ ranges over the partitions of m of length at most n, the Schur functions
sµ(q) form a basis of the homogeneous symmetric polynomials in q of degree
m.

The Schur functions include as special cases the elementary symmetric func-
tions ek and the complete homogeneous symmetric functions hk. Namely, ek(q) =
s1k(q) and hk(q) = s(k)(q).

The next result expresses the integral Gn(q) defined in (4.1) as a quotient
of Schur functions.

Theorem 5.1. Let q = (q1, . . . , qn) and Re qk > 0. Then

Gn(q) =
sλ(n−1)(q)

sλ(n+1)(q)
=

sλ(n−1)(q)

en(q)sλ(n)(q)
. (5.1)

Proof. From the previous definition of Schur functions, the right hand side of
(5.1) becomes

sλ(n−1)(q)

en(q) sλ(n)(q)
=

aλ(n−1)+λ(n)(q)

en(q)a2λ(n)(q)
.

Observe that a2λ(n)(q) = |q2n−2j
i |i,j = aλ(n)(q

2) is simply the Vandermonde
determinant with qi replaced by q2

i . Next, expand the determinant aλ(n−1)+λ(n)

by the last column (which consists of 1’s only) to find

aλ(n−1)+λ(n)(q) = en(q)

n
∑

k=1

(−1)n−k

qk
aλ(n−1)(q

2
1 , q2

2 , . . . , q2
k−1, q

2
k+1, . . . , q

2
n).

Therefore

aλ(n−1)+λ(n)(q)

en(q) a2λ(n)(q)
=

n
∑

k=1

(−1)n−k

qk

∏

i<j

i,j 6=k

(q2
i − q2

j )
/

∏

i<j

(q2
i − q2

j ). (5.2)
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Observe that the only terms that do not cancel in the quotient above are those
for which i = k or j = k. The change of sign required to transform the factors
q2
k − q2

j to q2
j − q2

k eliminates the factor (−1)n−k. The expression on the right
hand side of (5.2) is precisely the value (4.2) of the integral Gn(q) produced by
partial fractions.

It remains to show that en(q)sλ(n)(q) = sλ(n+1)(q). This amounts to the
identity

q1q2 · · · qn

∣

∣

∣
q2n−2j
i

∣

∣

∣

i,j
=

∣

∣

∣
q2n−2j+1
i

∣

∣

∣

i,j

which follows directly by inserting the factors qi one at a time per row.

The next example illustrates Theorem 5.1 with the principal specialization
of the parameters q.

Example 5.2. The special case qk = qk produces the evaluation

2

π

∫ ∞

0

n
∏

k=1

1

x2 + q2k
=

1

qn2

n−1
∏

j=1

1 − q2j−1

1 − q2j
. (5.3)

This can be obtained inductively from Lemma 4.2 but may also be derived
from Theorem 5.1 in combination with the evaluation (6.1) of the principal
specialization of Schur functions as in Theorem 7.21.2 of [18].

Taking the limit q → 1 in (5.3) reproduces formula (2.2) for Gn. In other
words, (5.3) is a q-analog [7] of (2.2). Similarly,

πq

1 + q
= q1/4

∞
∏

n=1

1 − q2n

1 − q2n−1

1 − q2n

1 − q2n+1

is a useful q-analog of Wallis’ formula (1.2) which naturally appears in [8] where
Gosper studies q-analogs of trigonometric functions (in fact, Gosper arrives at
the above expression as a definition for πq while q-generalizing the reflection
formula Γ(z)Γ(1 − z) = π

sin πz ).

The proof of Theorem 5.1 extends to the following more general result.

Lemma 5.3.
n

∑

k=1

1

qα−β
k

n
∏

j=1

j 6=k

1

qα
j − qα

k

=
sλ(q)

sµ(q)

where

λ = (α − 1) · λ(n) − β · 1n−1,

µ = (α − 1) · λ(n + 1) − (β − 1) · 1n.

As a consequence, one obtains the following integral evaluation which gen-
eralizes the evaluation of Gn(q) given in Theorem 5.1.
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Theorem 5.4. Let q = (q1, . . . , qn) and Re qk > 0. Further, let α > 0 and
0 < β < αn be given such that β is not an integer multiple of α. Then

Gn,α,β(q) :=
sin(πβ/α)

π/α

∫ ∞

0

xβ−1

∏n
k=1(x

α + qα
k )

dx =
sλ(q)

sµ(q)

where λ and µ are as in Lemma 5.3.

Proof. Upon writing β = bα + β1 for b < n a positive integer and 0 < β1 < α,
the assertion follows from the partial fraction decomposition

xbα

∏n
k=1(x

α + qα
k )

= (−1)b
n

∑

k=1

qbα
k

xα + qα
k

∏

j 6=k

1

qα
j − qα

k

,

the integral evaluation

∫ ∞

0

xβ1−1dx

xα + qα
=

1

qα−β1

π/α

sin(πβ1/α)
,

and Lemma 5.3.

6 Schur functions in terms of SSYT

The Schur function sλ(q) associated to a partition λ also admits a represen-
tation in terms of semi-standard Young tableaux (SSYT). The reader will find
information about this topic in [4]. Given a partition λ = (λ1, λ2, . . . , λn), the
Young diagram of shape λ is an array of boxes, arranged in left-justified rows,
consisting of λ1 boxes in the first row, λ2 in the second row ending with λn

boxes in the nth row. A SSYT of shape λ is a filling of the boxes of the Young
diagram of shape λ with positive integers. These integers are restricted to be
weakly increasing across rows (repetitions are allowed) and strictly increasing
down columns. From this point of view, the Schur function sλ(q) is defined as

sλ(q) =
∑

T

qT

where the sum is over all SSYT of shape λ with entries from {1, 2, . . . , n}. The
symbol qT is a monomial in the variables qj , where the exponent of qj is the
number of appearances of j in T . For example, the array shown in Figure 1 is a
tableau T for the partition (6, 4, 3, 3). The corresponding monomial qT is given
by q1q

3
2q3q

3
4q4

5q2
6q7q8.

The number N(µ) of SSYT of shape µ can be obtained by letting q → 1 in
the formula

sµ(1, q, q2, . . . , qn−1) =
∏

1≤i<j≤n

qµi+n−i − qµj+n−j

qj−1 − qi−1
(6.1)
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1 2 2 4 5 5
2 3 4 5
4 6 6
5 7 8

Figure 1: A tableau T for the partition (6, 4, 3, 3)

(see page 375 of [18]). This yields

N(µ) =
∏

1≤i<j≤n

µi − µj + j − i

j − i
. (6.2)

The evaluation (2.2) of Wallis’ integral (1.3) may be recovered from here as

Gn+1 =
sλ(n)(1

n+1)

sλ(n+2)(1
n+1)

=
N(λ(n))

N(λ(n + 2))
=

1

22n

(

2n

n

)

.

7 A counting problem

The k-central binomial coefficients c(n, k), defined by the generating function

(1 − k2x)−1/k =
∑

n≥0

c(n, k)xn,

are given by

c(n, k) =
kn

n!

n−1
∏

m=1

(1 + km).

For k = 2 these coefficients reduce to the central binomial coefficients
(

2n
n

)

. The
numbers c(n, k) are integers in general and their divisibility properties have been
studied in [20]. In particular, the authors establish that the k-central binomial
coefficients are always divisible by k and characterize their p-adic valuations.

The next result attempts an interpretation of what the numbers −c(n,−k)
count.

Corollary 7.1. Let λ and µ be the partitions given by

λ = (k − 1) · λ(n) − 1n−1,

µ = (k − 1) · λ(n + 1).

Then the integer −c(n,−k) enumerates the ratio between the total number of
SSYT of shapes λ and µ times the factor k2n−1/n.

Proof. By Theorem 5.4 and (6.2),

Gn,k,1(1
n) =

sλ(1n)

sµ(1n)
=

n−1
∏

m=1

km − 1

km
.

The claim follows.
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Remark 7.2. R. Stanley pointed out some interesting Schur function quotient
results. See exercises 7.30 and 7.32 in [18].

8 An integral from Gradshteyn and Ryzhik

It is now demonstrated how the previous results may be used to prove an integral
evaluation found as entry 3.112 in [9]. The main tool is the (dual) Jacobi-Trudi
identity which expresses a Schur function in terms of elementary symmetric
functions. Namely, if λ is a partition such that its conjugate λ′ (the unique
partition whose Young diagram, see Section 6, is obtained from the one of λ by
interchanging rows and columns) has length at most m then

sλ =
∣

∣eλ′

i
−i+j

∣

∣

1≤i,j≤m
.

This identity may be found for instance in [18, Corollary 7.16.2].

Theorem 8.1. Let fn and gn be polynomials of the form

gn(x) = b0x
2n−2 + b1x

2n−4 + . . . + bn−1,

fn(x) = a0x
n + a1x

n−1 + . . . + an

and assume that all roots of fn lie in the upper half-plane. Then

∫ ∞

−∞

gn(x)dx

fn(x)fn(−x)
=

πi

a0

Mn

∆n

where

∆n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a3 a5 . . . 0
a0 a2 a4 0
0 a1 a3 0
...

. . .

0 0 0 an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, Mn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b0 b1 b2 . . . bn−1

a0 a2 a4 0
0 a1 a3 0
...

. . .

0 0 0 an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. Write fn(x) = a0

∏n
j=1(x − iqj). By assumption, Re qj > 0. Further,

fn(x)fn(−x) = (−1)na2
0

n
∏

j=1

(x2 + q2
j ).

Let q = (q1, q2, . . . , qn). It follows from Theorem 5.4 that

∫ ∞

−∞

x2βdx

fn(x)fn(−x)
=

(−1)n+βπ

a2
0

sλ(n−1)−2β·1n−1(q)

sλ(n+1)−2β·1n(q)
=

(−1)nπ

a2
0

sλ′(q)

sλ(n+1)(q)

where λ = λ(n−1)+2·1β . The latter equality is obtained by writing the quotient
of (generalized) Schur functions as a quotient of alternants, multiplying the k-

th row with q2β
k each, and reordering the columns of the determinant in the
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numerator. The right-hand side now is a quotient of Schur functions to which
the Jacobi-Trudi identity may be applied.

sλ(n+1)(q) = |en+1−2k+j(q)|1≤k,j≤n = |e2k−j(q)|1≤k,j≤n .

Note that ek(q) = ikak. Hence, sλ(n+1)(q) = in(n+1)/2∆n. The term sλ′(q) is
dealt with analogously. The claim follows by expanding the determinant Mn

with respect to the first row.

9 A sum related to Feynman diagrams

Particle scattering in quantum field theory is usually described in terms of Feyn-
man diagrams. A Feynman diagram is a graphical representation of a particular
term arsing in the expansion of the relevant quantum mechanical scattering am-
plitude as a power series in the coupling constants that parametrize the strengths
of the interactions.

From the mathematical point of view, a Feynman diagram is a graph to
which a certain function is associated. If the graph has circuits (loops, in the
physics terminology) then this function is defined in terms of a number of in-
tegrals over the 4-dimensional momentum space (k0,k), where k0 is the energy
integration variable and k is a 3-dimensional momentum variable.

Feynman diagrams also appear in calculations of the thermodynamic prop-
erties of a system described by quantum fields. In this context, the integral over
the energy-component of a Feynman loop diagram is replaced by a summation
over discrete energy values. These Matsubara sums were introduced in [14]. A
general method to compute these sums in terms of an associated integral was
presented in [5].

These techniques, applied to the expression (4.2) for the integral Gn(q) give
the value of the sum associated with the one-loop Feynman diagram consisting
of n vertices and vanishing external momenta, Ni = 0, as depicted in Figure 2.

Figure 2: The one-loop Feynman diagram with n vertices and vanishing external
momenta. m is the summation variable associated to each of the internal lines.
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The Matsubara sum associated to the diagram in Figure 2 is

Mn(q) :=

∞
∑

m=−∞

n
∏

k=1

1

m2 + q2
k

(9.1)

where the variables qk are related to the kinematic energies carried by the (vir-
tual) particles in the Feynman diagram. This sum was denoted by SG in [5];
the notation has been changed here to avoid confusion.

Example 9.1. The first few Matsubara sums are

M1(q1) = π
D1

q1
,

M2(q1, q2) = π
q2D1 − q1D2

q1q2(q2
2 − q2

1)
,

M3(q1, q2, q3) = π
q2q3(q

2
2 − q2

3)D1 + q3q1(q
2
3 − q2

1)D2 + q1q2(q
2
1 − q2

2)D3

q1q2q3(q2
3 − q2

2)(q2
2 − q2

1)(q2
1 − q2

3)

with Dj = coth(πqj).

Theorem 9.2. The Matsubara sum Mn(q) is given by

Mn(q) = π

n
∑

k=1

coth(πqk)

qk

n
∏

j=1

j 6=k

1

q2
j − q2

k

.

Proof. This follows from the partial fraction expansion

n
∏

k=1

1

m2 + q2
k

=

n
∑

k=1

1

q2
k + m2

∏

j 6=k

1

q2
j − q2

k

which is a special case of (4.3), switching the order of summation, and employing
the classical

π coth(πz)

z
=

∞
∑

m=−∞

1

z2 + m2
.

Proof 2. The method developed in [5] shows that

Mn(q) = π

[

1 +

n
∑

m=1

nb(qm)(1 − Rm)

]

Gn(q) (9.2)

where Gn(q) is the integral defined in (4.1),

nb(q) =
1

e2πq − 1
=

1

2
(coth πq − 1) ,
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and Rm is the reflection operator defined by

Rmf(q1, . . . , qm, . . .) = f(q1, . . . ,−qm, . . .).

To use (9.2) combined with the evaluation (4.2) of Gn(q) it is required to com-
pute the action of each 1 − Rm on the summands of (4.2). Namely,

(1 − Rm)
1

qk

n
∏

j=1

j 6=k

1

q2
j − q2

k

=
2δkm

qk

n
∏

j=1

j 6=k

1

q2
j − q2

k

where δkm is the Kronecker delta. Therefore,

nb(qm)(1 − Rm)Gn(q) =
2 nb(qm)

qm

n
∏

j=1

j 6=m

1

q2
j − q2

m

,

and the result follows from 2nb(q) = coth(πq) − 1.

We close by giving an expansion of Mn(q) in terms of symmetric functions.
Starting with the classical expansion

π coth qk

qk
=

1

q2
k

− 2
∞
∑

m=1

(−1)mq2m−2
k ζ(2m),

where ζ(s) denotes the Riemann zeta function, it follows that

Mn(q) =

n
∑

k=1

1

q2
k

∏

j 6=k

1

q2
j − q2

k

− 2

∞
∑

m=1

(−1)mζ(2m)

n
∑

k=1

q
2(m−1)
k

∏

j 6=k

1

q2
j − q2

k

.

Using the identity (hj being the complete homogeneous symmetric function)

hm−n(x1, . . . , xn) = (−1)n−1
n

∑

k=1

xm−1
k

∏

j 6=k

1

xj − xk
,

which follows from Lemma 5.3 (or see page 450, Exercise 7.4 of [18]), this proves:

Corollary 9.3. The Matsubara sum Mn(q), defined in (9.1), is given by

Mn(q) =
1

en(q2)
+ 2

∞
∑

m=0

(−1)mζ(2m + 2n)hm(q2).

10 Conclusions

The evaluation of definite integrals has the charming quality of taking the reader
for a tour of many parts of mathematics. An innocent-looking generalization of
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one of the oldest formulas in analysis has been shown to connect the work of
the four authors in the title.
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