CONVERGENCE OF A PLANAR TRANSFORMATION

In $[1,2]$ we have developed a theory of the rational Landen transformations. These are transformations on the parameters of a rational function that preserve its integral. This is the rational analogue of the elliptic Landen transformation:

$$
a_{1}=(a+b) / 2 \text { and } b_{1}=\sqrt{a b}
$$

that preserve the elliptic integral

$$
G(a, b)=\int_{0}^{\pi} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}
$$

A general theory of convergence has been discussed in [3] and the specific case of degree 6 appears in [1]. The proof of convergence of these transformations employs their connection to integrals.

Problem. Prove directly that the transformation

$$
\begin{aligned}
& a_{1} \rightarrow \frac{a_{1} a_{2}+5 a_{1}+5 a_{2}+9}{\left(a_{1}+a_{2}+2\right)^{4 / 3}} \\
& a_{2}=\frac{a_{1}+a_{2}+6}{\left(a_{1}+a_{2}+2\right)^{2 / 3}}
\end{aligned}
$$

converges provided $R_{-}\left(a_{1}^{0}, a_{2}^{0}\right)>0$. The function R_{-}is the branch of the resolvent curve

$$
R\left(a_{1}, a_{2}\right)=4 a_{1}^{3}+4 a_{2}^{3}-18 a_{1} a_{2}-a_{1}^{2} a_{2}^{2}+27=0
$$

that intersects the third quadrant.
The transformation above, coupled with

$$
\begin{aligned}
b_{0} & \rightarrow \frac{b_{0}+b_{1}+b_{2}}{\left.a_{1}+a_{2}+2\right)^{2 / 3}} \\
b_{1} & \rightarrow \frac{b_{0}\left(a_{2}+3\right)+2 b_{1}+b_{2}\left(a_{1}+3\right)}{a_{1}+a_{2}+2} \\
b_{2} & \rightarrow \frac{b_{0}+b_{2}}{\left(a_{1}+a_{2}+2\right)^{1 / 3}}
\end{aligned}
$$

preserve the integral

$$
U=\int_{0}^{\infty} \frac{b_{0} x^{4}+b_{1} x^{2}+b_{2}}{x^{6}+a_{1} x^{4}+a_{2} x^{2}+1} d x
$$

References

[1] Boros, G. - Moll, V.: A rational Landen transformation. The case of degree six. Contemporary Mathematics 251, 83-91. Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis; E.L. Grinberg, S. Berhanu, M. Knopp, G. Mendoza and E.T. Quinto editors.
[2] Boros, G. - Moll, V.: Landen transformations and the integration of rational functions. Math. Comp. 71 (2002), 649-668.
[3] Hubbard, J. - Moll, V.: A geometric view of the rational Landen transformation. Preprint.

