LOGCONCAVITY OF A SEQUENCE OF COEFFICIENTS ARISING FROM A FAMILY OF DEFINITE INTEGRALS

A finite sequence of real numbers $\left\{d_{0}, d_{1}, \cdots, d_{m}\right\}$ is said to be unimodal if there exists an index $0 \leq j \leq m$ such that $d_{0} \leq d_{1} \leq \cdots \leq d_{j}$ and $d_{j} \geq d_{j+1} \geq \cdots \geq d_{m}$. The sequence $\left\{d_{0}, d_{1}, \cdots, d_{m}\right\}$ with $d_{j} \geq 0$ is said to be logarithmically concave (or log concave for short) if $d_{j+1} d_{j-1} \leq d_{j}^{2}$ for $1 \leq j \leq m-1$.

The question deals with

$$
P_{m}(a)=\sum_{l=0}^{m} d_{l}(m) a^{l}
$$

with

$$
d_{l}(m)=2^{-2 m} \sum_{k=l}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{l} .
$$

The polynomials $P_{m}(a)$ arise in the formula

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi}{2^{m+3 / 2}(a+1)^{m+1 / 2}} P_{m}(a) .
$$

We have established the following result.
Theorem. If P is a polynomial with positive nondecreasing coefficients, then $P(x+1)$ is unimodal.

This is used in [1] to establish the unimodality of $d_{l}(m)$ and other sequences.
The question is to establish the logconcavity of the coefficients $d_{l}(m)$. We believe that much more is true. For a sequence $\mathbf{a}=\left\{a_{i}: 1 \leq i \leq n\right\}$ define the operator

$$
\mathfrak{L}(\mathbf{a}):=\left\{a_{j}^{2}-a_{j+1} a_{j-1}: 1 \leq j \leq n\right\}
$$

We say that a is k-logconcave if $\mathfrak{L}^{r}(\mathbf{a})$ is a positive sequence for $1 \leq r \leq k$. In this language, logconcavity is 1-logconcave. A sequence is called ∞-logconcave if it is k-logconcave for every k.

Problem 1. Prove that the coefficients $d_{l}(m)$ form an ∞-logconcave sequence.
It is perhaps simpler to establish this for the binomial coefficients.
Problem 2. Prove that the binomial coefficients form an ∞-logconcave sequence.

References

[1] Boros, G. - Moll, V.: A criterion for unimodality. Elec. Jour. Combinatorics, 6, 1999, \#R10.
[2] Wilf, H.: generatingfunctionology. Academic Press, 1990.

