THE EXPANSION OF THE TRIPLE SQUARE ROOT

In [1] we have shown that the Taylor expansion of h(c) = v/a + /1 + ¢ is given
by
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The integrals can be expressed as
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where the polynomial P, (a) is given by
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The special cases ¢ = 1 and a = ¢? appear in BROMWICH [2], page 192, exercise
21, and in [3] 1.114.1.

Based on symbolic experiments we propose a formula for the Taylor series ex-
pansion of the triple square root

hap(c) = \/a+\/b+\/1—+6.

Prove that the coefficients of the Taylor series expansion
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are given by

Bo(a,b) = a+V1+b
and
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where g := (1 +b)(a+ 1+ b) and

Pia,2) = #Pia/2)

is the homogenization of P.

Note. The presence of the homogeneous polynomials P} (a, z) suggests a geometric
interpretation of hq p(c).
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