THE EXPANSION OF THE TRIPLE SQUARE ROOT

In [1] we have shown that the Taylor expansion of $h(c)=\sqrt{a+\sqrt{1+c}}$ is given by

$$
\sqrt{a+\sqrt{1+c}}=\sqrt{a+1}+\frac{1}{\pi \sqrt{2}} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} N_{0,4}(a ; k-1) c^{k}
$$

Here

$$
N_{0,4}(a ; m)=\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}
$$

The integrals can be expressed as

$$
N_{0,4}(a ; m)=\frac{\pi}{2^{m+3 / 2}(a+1)^{m+1 / 2}} P_{m}(a)
$$

where the polynomial $P_{m}(a)$ is given by

$$
P_{m}(a)=2^{-2 m} \sum_{k=0}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}(a+1)^{k} .
$$

The special cases $c=1$ and $a=c^{2}$ appear in BROMWICH [2], page 192, exercise 21, and in [3] 1.114.1.

Based on symbolic experiments we propose a formula for the Taylor series expansion of the triple square root

$$
h_{a, b}(c):=\sqrt{a+\sqrt{b+\sqrt{1+c}}}
$$

Prove that the coefficients of the Taylor series expansion

$$
h_{a, b}(c)=\sum_{n=0}^{\infty} \beta_{n}(a, b) c^{n}
$$

are given by

$$
\beta_{0}(a, b)=\sqrt{a+\sqrt{1+b}}
$$

and

$$
\beta_{n}(a, b)=\frac{(-1)^{n-1}}{n 2^{2 n+1}} \sum_{k=0}^{n-1}\binom{2 n-2-k}{n-1} q^{-k-1 / 2} P_{k}^{*}(a, \sqrt{1+b})
$$

where $q:=(1+b)(a+\sqrt{1+b})$ and

$$
P_{k}^{*}(a, z)=z^{k} P_{k}(a / z)
$$

is the homogenization of P_{k}.
Note. The presence of the homogeneous polynomials $P_{k}^{*}(a, z)$ suggests a geometric interpretation of $h_{a, b}(c)$.

References

[1] Boros, G. - Moll, V.: The double square root, Jacobi polynomials and Ramanujan's master theorem. Journal of Computational and Applied Mathematics 130 (2001), 337-344.
[2] Bromwich, T.J.: An Introdcution to the Theory of Infinite Series, 2nd. Edition, MacMillan, New York, 1926.
[3] Gradshteyn, I.S. and Rhyzik, I.M.: Tables of Integrals, Series and Products, 6-th edition, Academic Press, New York, 2000. Edited by Alan Jeffrey and Daniel Zwillinger.

