
THE EXPANSION OF THE TRIPLE SQUARE ROOT

In [1] we have shown that the Taylor expansion of h(c) =
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Here
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.

The integrals can be expressed as
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where the polynomial Pm(a) is given by
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The special cases c = 1 and a = c2 appear in BROMWICH [2], page 192, exercise
21, and in [3] 1.114.1.

Based on symbolic experiments we propose a formula for the Taylor series ex-
pansion of the triple square root

ha,b(c) :=

√
a+

√
b+
√

1 + c.

Prove that the coefficients of the Taylor series expansion

ha,b(c) =
∞∑
n=0

βn(a, b)cn

are given by

β0(a, b) =
√
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1 + b

and

βn(a, b) =
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n 22n+1
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q−k−1/2P ∗k (a,

√
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where q := (1 + b)(a+
√

1 + b) and

P ∗k (a, z) = zkPk(a/z)

is the homogenization of Pk.

Note. The presence of the homogeneous polynomials P ∗k (a, z) suggests a geometric
interpretation of ha,b(c).
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