
THE p-ADIC VALUATION OF A SEQUENCE OF COEFFICIENTS
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The polynomials Pm(a) arise in the formula∫ ∞
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We are interested in the divisibility properties of the coefficients dl(m). The
function Sp(m), for p prime, is the sum of the digits of m when written in base
p. The p-adic valuation of an integer n is defined as the exact exponent of p that
divides n.

We have established the following result:

Theorem. The 2-adic valuation of the constant term d0(m) is given by

ν2(d0(m)) = S2(m)− 2m.

The 2-adic valuation of the linear term d1(m) is given by

ν2(d1(m)) = 1− 2m+ ν2

((
m+ 1

2

))
+ S2(m).

Problem 1. Produce similar formulas for the other coefficients ν2(dj(m)).

The case of the prime 3 seems more difficult.

Problem 2. Prove the existence of a sequence of positive integers mj such that
ν3(d1(mj) = 0. Extensive calculations show that

qj := mj+1 −mj ∈ {2, 7, 20, 61, 182, · · · }
where the sequence {qj} above is defined by q1 = 2 and qj+1 = 3qj + (−1)j+1.
Establish similar results for other odd primes.
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