
TWO FAMILIES OF POLYNOMIALS WITH ZEROS ON A
VERTICAL LINE
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This can be found in [1].

The number of terms in the sum giving dl(m) is m + 1 − l. In [2] we have shown
the existence of two families of polynomials {αl(m), βl(m)} such that
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The first few are

α0(m) = 1 β0(m) = 0
α1(m) = 2m+ 1 β1(m) = 1

α2(m) = 2(2m2 + 2m+ 1) β2(m) = 2(2m+ 1)
α3(m) = 4(2m+ 1)(m2 +m+ 3) β3(m) = 12(m2 +m+ 1)

Problem 1. Prove that the coefficients of αl(m) and βl(m) are positive integers
and that the degrees of αl and βl are l and l − 1, respectively.

Problem 2. Prove that all the zeros of αl(m) and βl(m) lie on the line Re(m) =
−1/2.

Problem 3. Study the limit of αl and βl as l → ∞. Perhaps this would produce
entire functions with zeros on a fixed vertical line.
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