TWO FAMILIES OF POLYNOMIALS WITH ZEROS ON A VERTICAL LINE

The polynomial

$$
P_{m}(a)=\sum_{l=0}^{m} d_{l}(m) a^{l},
$$

with

$$
d_{l}(m)=2^{-2 m} \sum_{k=l}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{l}
$$

appears in the formula

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi}{2^{m+3 / 2}(a+1)^{m+1 / 2}} P_{m}(a)
$$

This can be found in [1].
The number of terms in the sum giving $d_{l}(m)$ is $m+1-l$. In [2] we have shown the existence of two families of polynomials $\left\{\alpha_{l}(m), \beta_{l}(m)\right\}$ such that

$$
d_{l}(m)=\frac{1}{l!m!2^{m+l}}\left(\alpha_{l}(m) \prod_{k=1}^{m}(4 k-1)-\beta_{l}(m) \prod_{k=1}^{m}(4 k+1)\right)
$$

The first few are

$$
\begin{aligned}
\alpha_{0}(m)=1 & \beta_{0}(m)=0 \\
\alpha_{1}(m)=2 m+1 & \beta_{1}(m)=1 \\
\alpha_{2}(m)=2\left(2 m^{2}+2 m+1\right) & \beta_{2}(m)=2(2 m+1) \\
\alpha_{3}(m)=4(2 m+1)\left(m^{2}+m+3\right) & \beta_{3}(m)=12\left(m^{2}+m+1\right)
\end{aligned}
$$

Problem 1. Prove that the coefficients of $\alpha_{l}(m)$ and $\beta_{l}(m)$ are positive integers and that the degrees of α_{l} and β_{l} are l and $l-1$, respectively.

Problem 2. Prove that all the zeros of $\alpha_{l}(m)$ and $\beta_{l}(m)$ lie on the line $\operatorname{Re}(m)=$ $-1 / 2$.

Problem 3. Study the limit of α_{l} and β_{l} as $l \rightarrow \infty$. Perhaps this would produce entire functions with zeros on a fixed vertical line.

References

[1] Boros, G. - Moll, V.: An integral hidden in Gradshteyn and Rhyzik. Journal of Computational and Applied Mathematics 106, 1999, 361-368.
[2] Boros, G. - Moll, V., Shallit, J.: The 2-adic valuation of the coefficients of a polynomial. Revista Scientia, to appear.

