APMA 1650 - Spring 2021 Lecture 11

Friday, Feb 12, 2021

Announcements

- \blacktriangleright Midterm Exam 1 Moved to Monday 2/22
- \blacktriangleright There will be a Homework 4 due 2/19
- \triangleright TAs will hold review sessions next week (week 5)

From last lecture we introduced the concept of the expected value of a discrete random variable.

Definition: Let X be a discrete random variable with range $R_X = \{x_1, x_2, x_3, \ldots\}$. The expected value of X denoted by $EX = E(X) = E[X]$ is defined by $EX = \mu_X = \sum x_k P_X(x_k)$ $x_k \in R_X$

You should think of the expected value as the *average* or mean value that the random variable takes. μ_X is typically called the mean. It is just a real (deterministic) number! (not random)

Example: $X \sim \text{Bernoulli}(p)$. What is EX ?

Example: $X \sim$ Geometric(p). What is EX ?

Example: $X \sim \text{Poisson}(\lambda)$. What is *EX*?

Functions of random variables

Supose X is a discrete random variable and $q : \mathbb{R} \to \mathbb{R}$, then $Y = q(X)$ is another random variable with range

$$
R_Y = \{g(x) : x \in R_X\} = \{g(x_1), g(x_2), \ldots\}.
$$

What is the PMF of $Y = q(X)$?

$$
P_Y(y) = P(g(X) = y) = \sum_{\{x \,:\, g(x) = y\}} P_X(x)
$$

Sum over all the probabilities of values $x \in R_X$ that lead to $q(x) = y$, can have multiple values if q is not one-to-one.

Functions of random variables

Example X is a discrete random variable with $P_X(k) = \frac{1}{5}$ for $k \in \{-2, -1, 0, 1, 2\}.$

$$
\blacktriangleright \text{ What is } P_Y(y) \text{ for } Y = |X|?
$$

 \blacktriangleright What is $E|X|$?

Functions of Random Variables

We can calculate $E[g(X)]$ without having to know the PMF of $q(X)$

Law of the unconcious statistician (LOTUS) Let X be a discete RV and let $q : \mathbb{R} \to \mathbb{R}$, then $E[g(X)] = \sum g(x_k)P_X(x_k)$ $x_k \in R_X$

This law is "obvious" to a statistician. Think in terms of relative frequencies...

$$
\text{average of } g(X) = \frac{1}{N} \sum_{x_k \in R_X} \{ \# \text{ of times } x_k \text{ occurs} \} g(x_k)
$$

Proof

$$
E[Y] = \sum_{y \in R_Y} yP_Y(y)
$$

=
$$
\sum_{y \in R_Y} y \sum_{x:g(x)=y} P_X(x)
$$

=
$$
\sum_{y \in \mathbb{R}_X} \sum_{x:g(x)=y} g(x)P_X(x)
$$

=
$$
\sum_{x \in R_X} g(x)P_X(x)
$$

Here we used the partition

$$
R_X = \bigcup_{y \in R_Y} \{x \,:\, g(x) = y\}
$$

Properties of Expectation

Linearity of Expectation: Let $a, b \in \mathbb{R}$ and X be a discrete RV

$$
E[aX + b] = aE[X] + b
$$

Proof: Take $g(x) = ax + b$, then

$$
E[g(X)] = \sum_{x \in R_X} (ax + b)P_X(x)
$$

= $a \sum_{x \in R_X} xP_X(x) + b \sum_{x \in R_X} P_X(x)$
EX

More Generally: Let X_1, \ldots, X_n be ANY discrete random variables

$$
E[X_1 + X_2 + \ldots + X_n] = EX_1 + EX_2 + \ldots + EX_n
$$

Note there is no assumption of independence here

We need the concept of joint probability to prove this (this will be later)

Example: $X \sim \text{Binomial}(n, p)$. What is *EX*?

How about $X \sim$ Pascal (m, p) ?

Example: *n* students turn in homework to m dropboxes. Each student picks a dropbox at random. What is the expected number of empty dropboxes?

Variance

A measure of how spread out a random variable (or PMF) is about it's mean $\mu_X = EX$

how far from mean
\n
$$
E[\overbrace{X-\mu_X}^{how \text{ far from mean}}] = E[X] - \mu_X = \mu_X - \mu_X = 0.
$$

Definition Let X be a random variable with mean $\mu_X =$ EX , then the variance of X is defined by

$$
\text{Var}(X) = E[(X - \mu_X)^2]
$$

The standard deviation is defined by

$$
\mathsf{SD}_X = \sigma_X = \sqrt{\mathsf{Var}(X)}
$$

A useful formula

Computational formula: Let X be a random variable with mean $\mu_X = EX$,

$$
\text{Var}(X) = E[X^2] - \mu_X^2
$$

Proof:

$$
\begin{aligned} \text{Var}(X) &= E(X - \mu_X)^2 \\ &= E[X^2 - 2\mu_X X + \mu_X^2] \\ &= E[X^2] - 2\mu_X EX + \mu_X^2 \\ &= E[X^2] - 2\mu_X^2 + \mu_X^2 \\ &= E[X^2] - \mu_X^2. \end{aligned}
$$

Variance

Example: $X \sim \text{Bernoulli}(p)$. What is Var (X) ?

Properties of Variance

Rescaling: Let X be a random variable and $a, b \in \mathbb{R}$, then

$$
\mathsf{Var}(aX + b) = a^2 \mathsf{Var}(X)
$$

Proof: Let $Y = aX + b$. Note that $\mu_Y = a\mu_X + b$, so

$$
Y - \mu_Y = (aX + b) - (a\mu_X + b) = a(X - \mu_X)
$$

Therefore

$$
\text{Var}(Y) = E[(Y - \mu_Y)^2] = E[a^2(X - \mu_X)^2] = a^2 \text{Var}(X)
$$

Shifting a random variable by a constant doesn't change it's variance. Rescaling

Properties of Variance

More generally: Let $X_1, X_2, \ldots X_n$ be independent random variables, then

 $Var(X_1 + X_2 + \ldots + X_n) = Var(X_1) + Var(X_2) + \ldots Var(X_n).$

We will be able to show this later using the idea of covariance.

This is not true if the random variables are not independent!

Variance

Example: $X \sim \text{Binomial}(n, p)$. What is Var (X) ?