APMA 1650 - Spring 2021 Lecture 11

Friday, Feb 12, 2021

Announcements

- Midterm Exam 1 Moved to Monday 2/22
- ► There will be a Homework 4 due 2/19
- TAs will hold review sessions next week (week 5)

From last lecture we introduced the concept of the *expected value* of a discrete random variable.

Definition: Let X be a discrete random variable with range $R_X = \{x_1, x_2, x_3, \ldots\}$. The expected value of X denoted by EX = E(X) = E[X] is defined by $EX = \mu_X = \sum_{x_k \in R_X} x_k P_X(x_k)$

You should think of the expected value as the *average* or mean value that the random variable takes. μ_X is typically called the mean. It is just a real (deterministic) number! (not random)

Example: $X \sim \text{Bernoulli}(p)$. What is EX?

Example: $X \sim \text{Geometric}(p)$. What is EX?

Example: $X \sim \text{Poisson}(\lambda)$. What is EX?

Functions of random variables

Supose X is a discrete random variable and $g : \mathbb{R} \to \mathbb{R}$, then Y = g(X) is another random variable with range

$$R_Y = \{g(x) : x \in R_X\} = \{g(x_1), g(x_2), \ldots\}.$$

What is the PMF of Y = g(X)?

$$P_Y(y) = P(g(X) = y) = \sum_{\{x : g(x) = y\}} P_X(x)$$

Sum over all the probabilities of values $x \in R_X$ that lead to g(x) = y, can have multiple values if g is not one-to-one.

Functions of random variables

Example X is a discrete random variable with $P_X(k) = \frac{1}{5}$ for $k \in \{-2, -1, 0, 1, 2\}$.

• What is $P_Y(y)$ for Y = |X|?

• What is E|X|?

Functions of Random Variables

We can calculate E[g(X)] without having to know the PMF of g(X)

Law of the unconcious statistician (LOTUS) Let X be a discete RV and let $g : \mathbb{R} \to \mathbb{R}$, then $E[g(X)] = \sum_{x_k \in R_X} g(x_k) P_X(x_k)$

This law is "obvious" to a statistician. Think in terms of relative frequencies...

average of
$$g(X) = \frac{1}{N} \sum_{x_k \in R_X} \{ \# \text{ of times } x_k \text{ occurs} \} g(x_k)$$

Proof

$$E[Y] = \sum_{y \in R_Y} y P_Y(y)$$

= $\sum_{y \in R_Y} y \sum_{x: g(x)=y} P_X(x)$
= $\sum_{y \in \mathbb{R}_X} \sum_{x: g(x)=y} g(x) P_X(x)$
= $\sum_{x \in R_X} g(x) P_X(x)$

Here we used the partition

$$R_X = \bigcup_{y \in R_Y} \{x : g(x) = y\}$$

Properties of Expectation

Linearity of Expectation: Let $a, b \in \mathbb{R}$ and X be a discrete RV

$$E[aX+b] = aE[X] + b$$

Proof: Take g(x) = ax + b, then

$$E[g(X)] = \sum_{x \in R_X} (ax+b)P_X(x)$$
$$= a \sum_{x \in R_X} xP_X(x) + b \sum_{x \in R_X} P_X(x)$$
$$\underbrace{\sum_{x \in R_X} xP_X(x)}_{EX} + b \sum_{x \in R_X} P_X(x)$$

More Generally: Let X_1, \ldots, X_n be ANY discrete random variables

$$E[X_1 + X_2 + \ldots + X_n] = EX_1 + EX_2 + \ldots + EX_n$$

Note there is no assumption of independence here

We need the concept of joint probability to prove this (this will be later)

Example: $X \sim \text{Binomial}(n, p)$. What is EX?

How about $X \sim \mathsf{Pascal}(m, p)$?

Example: n students turn in homework to m dropboxes. Each student picks a dropbox at random. What is the expected number of empty dropboxes?

Variance

A measure of how spread out a random variable (or PMF) is about it's mean $\mu_X = EX$

how far from mean
$$E[\overbrace{X-\mu_X}^{\text{how far from mean}}] = E[X] - \mu_X = \mu_X - \mu_X = 0.$$

Definition Let X be a random variable with mean $\mu_X = EX$, then the variance of X is defined by

$$\mathsf{Var}(X) = E[(X - \mu_X)^2]$$

The standard deviation is defined by

$$\mathsf{SD}_X = \sigma_X = \sqrt{\mathsf{Var}(X)}$$

A useful formula

Computational formula: Let X be a random variable with mean $\mu_X = EX$,

$$\mathsf{Var}(X) = E[X^2] - \mu_X^2$$

Proof:

$$Var(X) = E(X - \mu_X)^2$$

= $E[X^2 - 2\mu_X X + \mu_X^2]$
= $E[X^2] - 2\mu_X EX + \mu_X^2$
= $E[X^2] - 2\mu_X^2 + \mu_X^2$
= $E[X^2] - \mu_X^2$.

Variance

Example: $X \sim \text{Bernoulli}(p)$. What is Var(X)?

Properties of Variance

Rescaling: Let X be a random variable and $a, b \in \mathbb{R}$, then

$$\mathsf{Var}(aX+b) = a^2\mathsf{Var}(X)$$

Proof: Let Y = aX + b. Note that $\mu_Y = a\mu_X + b$, so

$$Y - \mu_Y = (aX + b) - (a\mu_X + b) = a(X - \mu_X)$$

Therefore

$$Var(Y) = E[(Y - \mu_Y)^2] = E[a^2(X - \mu_X)^2] = a^2 Var(X)$$

Shifting a random variable by a constant doesn't change it's variance. Rescaling

Properties of Variance

More generally: Let $X_1, X_2, \ldots X_n$ be independent random variables, then

 $\operatorname{Var}(X_1 + X_2 + \ldots + X_n) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \ldots \operatorname{Var}(X_n).$

We will be able to show this later using the idea of covariance.

This is not true if the random variables are not independent!

Variance

Example: $X \sim \text{Binomial}(n, p)$. What is Var(X)?