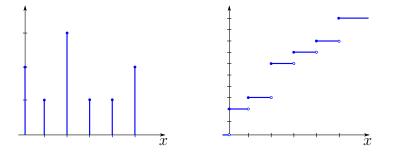
APMA 1650 - Spring 2021 Lecture 12

Wednesday, Feb 17, 2021

Review of Discrete Random variables

So far we have only dealt with discrete random variables with a countable range $R_X = \{x_1, x_2, \ldots\} \subset \mathbb{R}$.

PMF:
$$P_X(x) = P(X = x)$$
 CDF: $F_X(x) = P(X \le x)$



Properties of the CDF

Recall the CDF satisfies the following properties:

1.
$$F_X(-\infty) = \lim_{x \to -\infty} F_X(x) = 0$$

2.
$$F_X(\infty) = \lim_{x \to \infty} F_X(x) = 1$$

3. If $x \leq y$ then $F_X(x) \leq F_X(y)$ (non decreasing)

These properties hold for ANY random variable X

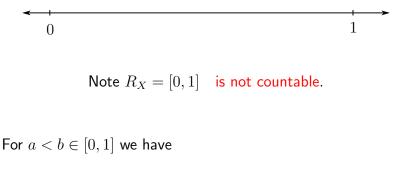
Not all sample spaces/ random variables are naturally discrete. Sometimes their range can be an uncountable set.

Example:

- The amount of rain fall in a storm
- The amount of time it takes for a light bulb to burn out
- ► The temperature in the room.
- ► The voltage across a resistor.

A simple example

Pick a random point X in [0, 1] uniformly, $X \sim \text{Uniform}(0, 1)$.



$$P(X \in [a, b]) = b - a$$

The probability of the point being in [a, b] only depends on the "length" of [a, b].

A simple example

Since a point has no length

$$P({X = x}) = 0$$
, for all $x \in [0, 1]$.

No way to define PMF. All points have zero probability!

Proof: Since for each $\epsilon > 0$,

$$\{X = x\} \subseteq \{x - \epsilon \le X \le x + \epsilon\}$$

then

$$P(X = x) \le P(x - \epsilon \le X \le x + \epsilon) = 2\epsilon$$

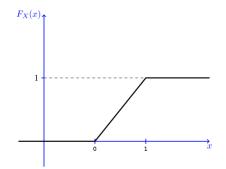
Sending $\epsilon \to 0$ gives P(X = x) = 0.

A simple example

However the CDF is well defined for any random variable

$$P(X \le x) = P(X \in [0, x]) = \begin{cases} 0 & x < 0\\ x & 0 \le x \le 1\\ 1 & x > 1 \end{cases}$$

CDF has no jumps here! It is completely continuous.

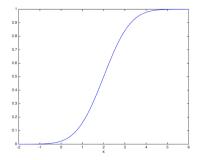


Continuous Random Variables

Let X be any random variable, then it's CDF is still defined by

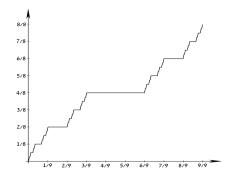
$$F_X(x) := P(X \le x).$$

Definition: A random variable is said to be a continuous random variable if it's CDF $F_X(x)$ is an absolutely continuous function on \mathbb{R} .



What the heck is absolutely continuous?

Not all continuous CDFs are nice



This is the CDF of a random variable that uniformly takes values in the Cantor set (an uncountable fractal subset). The CDF is called the Devil's stair case. https://en.wikipedia.org/wiki/Cantor_distribution

Absolute Continuity

A function F is absolutely continuous if it is differentiable "almost everywhere" and also satisfies the FTOC

$$F(b) - F(a) = \int_{a}^{b} F'(x) \mathrm{d}x.$$

For our purposes it suffices to consider functions which are continuous everywhere and differential except at a countable number of points

Probability density

PMF is not well defined because there is no probability at each point. Instead we could define a probability density

$$f_X(x) = \lim_{\epsilon \to 0} \frac{P(x < X \le x + \epsilon)}{\epsilon}$$

This is density in the sense that it is a probability per measurement unit on \mathbb{R} .

Note

$$P(x < X \le x + \epsilon) = F_X(x + \epsilon) - F_X(x)$$

therefore

$$f_X(x) = \lim_{\epsilon \to 0} \frac{F_X(x+\epsilon) - F_X(x)}{\epsilon} = F'_X(x)$$

Probability density function (PDF)

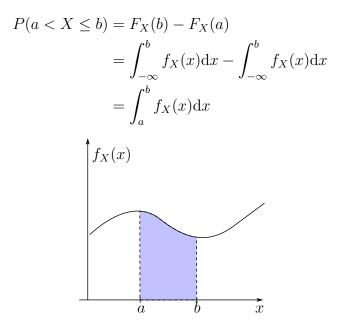
Definition Let X be a continuous random variable with an absolutely continuous CDF $F_X(x)$, then

$$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x} = F'_X(x)$$

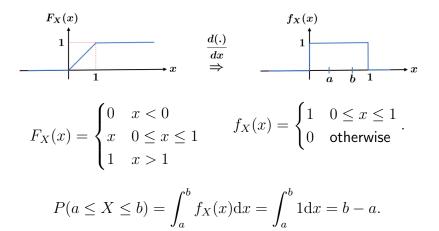
is called the probability density function (PDF) of X and satisfies

$$F_X(x) = \int_{-\infty}^{x} f_X(x) \mathrm{d}x.$$

Area rule



Example: $X \sim \text{Uniform}(0, 1)$



Properties of the PDF

1.
$$f_X(x) \ge 0$$
 for all $x \in \mathbb{R}$ (since $F_X(x)$ is non-decreasing)
2.
$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1 \quad \text{(normality)}$$

PDF can take values bigger than 1 bigger than 1!

We will often define the range of X by the support of f_X

$$R_X = \{x : x \in \mathbb{R}, f(x) > 0\}$$

This can miss probability zero values

Properties of the PDF

3. Area rule

$$P(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) \mathrm{d}x$$

4. More generally for "any" set $A \subset \mathbb{R}$

$$P(X \in A) = \int_A f_X(x) \mathrm{d}x$$

Here "any" set means any countable union and intersection of intervals.

Example: Let X be a continuous RV with the PDF

$$f_X(x) = \begin{cases} ce^{-x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Find c, $F_X(x)$, and P(1 < X < 3).

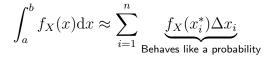
Comparison to Discrete RVs

For discrete we sum the probabilities over all $x \in A$

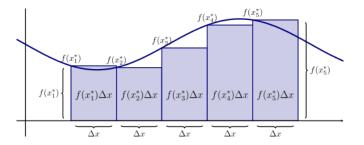
For continuous we integrate PDF over the set A

Riemann Sums

Can approximate a continuous RV X by discrete on $X^{(n)}$ using Riemann sums



Choose $X^{(n)}$ to have $P_{X^{(n)}}(x_i^*) = f_X(x_i^*)\Delta x_i$, $X^{(n)}$ is discrete.



Expected Value

Recall for a discrete random variable

$$EX = \sum_{x \in R_X} x P_X(x)$$

By the discrete to continuous analogy given above

$$\sum_{x} \Rightarrow \int_{-\infty}^{\infty}, \qquad P_X(x) \Rightarrow f_X(x)$$

Definition Let X be a continuous random variable, then it's expected value is

$$EX = \mu_X = \int_{-\infty}^{\infty} x f_X(x) \mathrm{d}x$$

Example: Consider a random variable X with PDF

$$f_X(x) = \begin{cases} cy^2 & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

Find c and find E[X].

LOTUS

We also have the natural extension of the law of the unconscious statistician for continuous random variables.

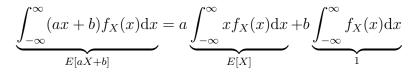
LOTUS Given a continuous random variable and g: $\mathbb{R} \to \mathbb{R}$ $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$

Linearity of Expectation

Linearity of expectation is a general property of ANY random variable and still holds: For $a,b\in\mathbb{R}$

$$E[aX+b] = aE[X]+b$$

Proof:



More generally for X_1, X_2, \ldots, X_n continuous RVs we still have

$$E[X_1 + X_2 + \dots X_n] = E[X_1] + E[X_2] + \dots + E[X_n]$$

Variance

As in the case with discrete random variables, we are interested in average deviations from the mean. Choose $g(x) = (x - \mu_X)^2$.

Definition: The variance of a continuous random variable X is defined by

$$Var(X) = \sigma_X^2 = E(X - \mu)^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx.$$

The following formula still holds! (follows only from linearity)

$$\mathsf{Var}(X) = EX^2 - (EX)^2$$

Example Consider a random variable X with PDF

$$f_X(x) = \begin{cases} ce^{-x/10} & 0 \le x \\ 0 & \text{otherwise} \end{cases}$$

Find c, E[X], Var(X) and $E[e^{-X/10}]$.

Summary

▶ PDF:
$$f_X(x) = F'_X(x)$$
, $f_X(x) \ge 0$, $\int_{-\infty}^{\infty} f_X(x) dx = 1$

- Expected Value $EX = \int_{-\infty}^{\infty} x f_X(x) dx$
- ► LOTUS: $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$

• Variance:
$$Var(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$

Area Rule: $P(a < X < b) = \int_{a}^{b} f_{X}(x) dx = F_{X}(b) - F_{X}(a) \text{ or }$ $P(X \in A) = \int_{A} f_{X}(x) dx.$