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Summary of Continuous Random Variables

» Def: Fix(x) = P(X < ) is absolutely continuous

> PDF: fx(z) = Fi(), fx(z) >0, [ fx()dz =

» Area Rule:
P(Cl<X<b f fX d.I‘—Fx(b)—Fx(CL)

> Expected Value EX = [ zfx(z)dx
> LOTUS: Elg(X)] = [, g(a) fx(w)dz

> Variance: Var(X) = [*_(z — px)?fx(z)dz
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Functions of Continuous Random Variables

Suppose X is a continuous random variable and ¢ : R — R is

some function. Let
Y = g(X)

We know LOTUS

EY = /_OO g(z) fx(x)dx.

oo

Questions:
» What kind of random variable is Y7

» |s Y continuous?

» If so, what are Fy(y) and fy(y)?



Discrete Case

In the discrete case we could find the PMF of Y = ¢g(X) by

Pe(y)= Y Px(a)

{z:g(x)=y}
<& RX

This works for ANY g : R — R |

Simply sum the probabilities over all the x € Rx such that
g9(x) =y.



Continuous case
More complicated.

» Y = g(X) may not be continuous anymore

» If ¢ has flat parts then g(X) will be a partially discrete
(i.e g(x) = const)
» If g is not differentiable then g(X) may not have a PDF.

"Ugly” cases: ®
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Non continuous example (Flat parts)

If g(z) has flat parts, then Y = ¢(X) is not continuous (it will
end up mixed in general).

Example: If {y;,1>,...} C R and

9(2) = D el rsn (@),
k=0

where
1 k<ax<k+1

0 otherwise
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Y = g(X) is a discrete random variable with PMF
Py(yy) =Pk< X <k+1)

LOTUS still works

k=0 k

=) yPk<X<k+1)

k=0

= Py (yr)
k=0



What about nice g7 CDF Method

If ¢ is differentiable and has no flat parts. Then Y = g(X) is
again a continuous RV.

CDF Method:
1. Find RY — g(RX)
2. Find the CDF of Y



Example Suppose that X ~ Uniform(0,1) and Y = e*.
What are Fy(y) and fy(y)?

) Rx:YOJQ ) Ry:{‘jq’.x

z) N © Ly, e ).

PQYSSB: \D<67<535 )/
= P(x € lng ) <Rili)
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Example What about X ~ Uniform(—1,1) and Y = X??

b ~ o G -
P(aexsb )= 20, ° =






Method of Transformations

Another approach that gives a direct way to compute the PDF
is the Method of Transformations

First Assume:
» g is differentiable
» ¢ is strictly increasing 1 < 72 < g(x1) < g(x2)

PSRN

Let X be a continuous RV and Y = ¢g(X), then -]C
x= 500

/r
f)f(x):f )4 when g(z) =
fy(y)—{g(@ x()g () =y

0 otherwise




Proof

Since ¢ is strictly increasing ¢! is well-defined. For each
y € Ry there is a unique x = g~ *(y) such that g(z) =y

Fy(y) = P(Y <y)
= P(9(X) <)
= P(X < g_1 y)) strictly increasing
= P(X <x)

= Fy () S DC*D}




Change of variables interpretation

We can also see this as a change of variables formula on the
“measures” fx(x)dx and fy(y)dy via

y=gx) = dy=g(z)dx
or

frydy = fx(@)de = fr(y) = fz,(x)d_x

dy
d X
A

N

This explains why LOTUS still holds

St)(:) R%(w)akx SB j)C)
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What about strictly decreasing?
Suppose that g is strictly decreasing

Ty <x2 & g(x1) > g(x2).

Then for y = g(x)

Therefore since ¢'(z) < 0

Frlo) = 50— Fx(o) = ~fx(@)
B dr|  fx(x)
= Xy = i)




Monotone case

Now Assume: chrie (3
» g is differentiable \2/
» ¢ is strictly monotone (either increasing or decreasing)

Let X be a continuous RV and Y = ¢g(X), then
dzs

fy(y) = {J;)’{((f**)) = fx(2s) |

0 otherwise

when g(z,) =y




Example Consider X with PDF

fX<x)_{4x3 O<x<1

0 otherwise
Whatis Y =1/X7 £ - BQ{Q,Q) = Qo, 0\
, (
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General Case

What if the function is not monotone (and therefore not
invertible). Break it up into monotone pieces

g(x) A

Increasing

—,

: increasing
decre(asmg
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Monotone case

Now Assume:
» g is differentiable

» Ry can be broken in to a finite number of intervals where
g(x) is strictly monotone.

The PDF of Y = g(X) is given by

ZfXxk: ZfX

’9 xk

dxk

where x1, o, ... x, are all the solutions to g(z) = y.
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Find the PDF of Y = X2, ?\x: -~ 00 )
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BONUS: How to simulate an RV

This is a very useful technique for numerically generating
random variables from uniform ones

Let X be a random variable with invertible CDF Fx(x),
then ;;
Y = Fx(X) ~ Uniform(0, 1).

This means that

F3*(Uniform(0,1)) ~ X

Proof: y € [0, 1]
P(Y <y) = P(X < Fy'(y))
= Fx(F¢'(y))
=y _= CpF ¥ Ouba(a)



BONUS: How to simulate an RV

Steps (Inverse CDF method)

1. Find the inverse Fy.'(y) of the CDF Fx(x) of the
random variable X you want to generate

2. Generate U ~ Uniform(0,1) (MATLAB rand)
3. Calculate F'(U)

4. Profit

This actually works for ANY CDF (discrete or continuous) by
defining
Fy'(y) = inf{z : Fx(z) =y}


(null)://(null)rand

