APMA 1650 - Spring 2021 Lecture 13

Friday, Feb 19, 2021

Summary of Continuous Random Variables

- ▶ Def: $F_X(x) = P(X \le x)$ is absolutely continuous
- ▶ PDF: $f_X(x) = F'_X(x)$, $f_X(x) \ge 0$, $\int_{-\infty}^{\infty} f_X(x) dx = 1$
- Area Rule: $P(a \leq X \leq b) = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$
- Expected Value $EX = \int_{-\infty}^{\infty} x f_X(x) dx$
- ► LOTUS: $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
- ► Variance: $Var(X) = \int_{-\infty}^{\infty} (x \mu_X)^2 f_X(x) dx$

Functions of Continuous Random Variables

Suppose X is a continuous random variable and $g:\mathbb{R}\to\mathbb{R}$ is some function. Let

$$Y = g(X)$$

We know LOTUS

$$EY = \int_{-\infty}^{\infty} g(x) f_X(x) \mathrm{d}x.$$

Questions:

- What kind of random variable is Y?
- ► Is *Y* continuous?

▶ If so, what are
$$F_Y(y)$$
 and $f_Y(y)$?

Discrete Case

In the discrete case we could find the PMF of $Y=g(\boldsymbol{X})$ by

$$P_Y(y) = \sum_{\{x : g(x) = y\}} P_X(x).$$

$$\mathbf{x} \in \mathbf{R}_{\mathbf{x}}$$

This works for ANY $g : \mathbb{R} \to \mathbb{R}$!

Simply sum the probabilities over all the $x \in R_X$ such that g(x) = y.

Continuous case

More complicated.

- Y = g(X) may not be continuous anymore
- ► If g has flat parts then g(X) will be a partially discrete (i.e g(x) = const)
- ▶ If g is not differentiable then g(X) may not have a PDF.

"Ugly" cases: 😀

Non continuous example (Flat parts)

If g(x) has flat parts, then Y = g(X) is not continuous (it will end up mixed in general).

Example: If $\{y_1, y_2, \ldots\} \subset \mathbb{R}$ and

$$g(x) = \sum_{k=0}^{\infty} y_k I_{(k,k+1]}(x),$$

where

$$I_{(k,k+1]}(x) = \begin{cases} 1 & k < x \le k+1 \\ 0 & \text{otherwise} \end{cases}$$

Y = g(X) is a discrete random variable with PMF

$$P_Y(y_k) = P(k < X \le k+1)$$

LOTUS still works

$$EY = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$
$$= \sum_{k=0}^{\infty} y_k \int_k^{k+1} f_X(x) dx$$
$$= \sum_{k=0}^{\infty} y_k P(k < X \le k+1)$$
$$= \sum_{k=0}^{\infty} y_k P_Y(y_k)$$

What about nice g? CDF Method

If g is differentiable and has no flat parts. Then Y = g(X) is again a continuous RV.

CDF Method:

- 1. Find $R_Y = g(R_X)$
- 2. Find the CDF of \boldsymbol{Y}

$$F_Y(y) = P(Y \le y) = P(g(X) \le y)$$

3. Find the density

 $f_Y(y) = F'_Y(y)$

Example Suppose that $X \sim \text{Uniform}(0, 1)$ and $Y = e^X$. What are $F_Y(y)$ and $f_Y(y)$?

1)
$$R_x = [0, \overline{D}, R_y = [1, e]$$

 $e^{\circ} e^{\circ}$

$$P(Y \leq y) = P(e^{X} \leq y)$$
$$= P(X \leq lny) = F_{x}(lny)$$

y e {1, e}. $F_{y}(y) > F_{x}(lny)$ = $lny \left(F_{x}(x) = x\right)$ $\frac{1}{2}$ $q \in \{1, e\}$) <u>1</u>) <u>5</u> f, (2) otherwise.

 $Z_{\gamma} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ **Example** What about $X \sim \text{Uniform}(-1, 1)$ and $Y = X^2$? $P(a \le X \le b) = \frac{b-a}{1-(-1)} = \frac{b-a}{2}$ $F_{X}(x) = P(X \leq x) = P(-1 \leq X \leq x)$ $=\frac{2c+1}{2}$ $F_{x}(5) = P(X^{2} \leq 5) = P(-J_{5} \leq X \leq J_{5})$

 $F_{x}(y) = P(-Ny \leq x \leq Ny)$ $F_{y}(y) = F(-Ny \leq x \leq Ny)$ = E(T, N) $= \sqrt{5} + 1 - (-\sqrt{5}) + 1 = \frac{2\sqrt{5}}{2} = \sqrt{5}$ $F_{\chi}(5) = \sqrt{5}$, $\gamma \in (0, \overline{1})$. $f_{\gamma}(\gamma) = \begin{cases} 1/2 & 1/2 \\ 0 & 0 \end{cases}$ y e {o,i} ellerwise.

Method of Transformations

Another approach that gives a direct way to compute the PDF is the Method of Transformations

First Assume:

- ▶ g is differentiable
- ▶ g is strictly increasing $x_1 < x_2 \Leftrightarrow g(x_1) < g(x_2)$

Let X be a continuous RV and
$$Y = g(X)$$
, then

$$f_Y(y) = \begin{cases} \frac{f_X(x)}{g'(x)} = f_X(x)\frac{dx}{dy} & \text{when } g(x) = y \\ 0 & \text{otherwise} \end{cases}$$

Proof

Since g is strictly increasing g^{-1} is well-defined. For each $y \in R_Y$ there is a unique $x = g^{-1}(y)$ such that g(x) = y

$$F_{Y}(y) = P(Y \le y)$$

= $P(g(X) \le y)$
= $P(X \le g^{-1}(y))$ strictly increasing
= $P(X \le x) = \mathcal{F}_{X}(\mathcal{F})$ $\mathcal{F}_{Y} = \mathcal{F}_{Y}(\mathcal{F})$

Therefore for $y \in R_Y$ and $x = g^{-1}(y)$

$$f_Y(y) = f_X(x) \frac{\mathrm{d}x}{\mathrm{d}x} \text{ chain rule}$$
$$= \frac{f_X(x)}{g'(x)} \text{ using } \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}} = \frac{1}{g'(x)}$$

Change of variables interpretation

We can also see this as a change of variables formula on the "measures" $f_X(x)dx$ and $f_Y(y)dy$ via

$$y = g(x) \quad \Rightarrow \quad \mathrm{d}y = g'(x)\mathrm{d}x$$

or

$$f_Y(y)dy = f_X(x)dx \quad \Rightarrow \quad f_Y(y) = f_X(x)\frac{dx}{dy}$$

This explains why LOTUS still holds

$$\int g(x) f_{\chi}(x) d\chi = \int \int f_{\chi}(y) dy.$$

What about strictly decreasing? Suppose that *g* is strictly decreasing

$$x_1 < x_2 \quad \Leftrightarrow \quad g(x_1) > g(x_2).$$

Then for y = g(x)

$$F_Y(y) = P(g(X) \le y)$$

= $P(X \ge x)$
= $1 - F_X(x)$
 $\mathcal{Z} = \mathcal{J}'(\mathcal{J})$

Therefore since g'(x) < 0

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y}(1 - F_X(x)) = -f_X(x)\frac{\mathrm{d}x}{\mathrm{d}y}$$
$$= f_X(x)\left|\frac{\mathrm{d}x}{\mathrm{d}y}\right| = \frac{f_X(x)}{|g'(x)|}$$

Monotone case

Now Assume:

► g is differentiable

▶ g is strictly monotone (either increasing or decreasing)

Let X be a continuous RV and
$$Y = g(X)$$
, then

$$f_Y(y) = \begin{cases} \frac{f_X(x_*)}{|g'(x^*)|} = f_X(x_*) \left| \frac{\mathrm{d}x_*}{\mathrm{d}x} \right| & \text{when } g(x_*) = y\\ 0 & \text{otherwise} \end{cases}$$

Example Consider X with PDF

$$f_{X}(x) = \begin{cases} 4x^{3} & 0 < x \le 1\\ 0 & \text{otherwise} \end{cases}$$
What is $Y = 1/X$? $K_{y} = g\left([\circ, 1]\right) = [\circ, 1]$

$$g(x) = \frac{1}{x} = 3 \quad \frac{1}{y} = \frac{1}{x}.$$

$$x = \frac{1}{y} = 3 \quad \frac{1}{y} = \frac{1}{y}^{3}$$
Therefore $g \in [\circ, 1]$

$$f_{y}(y) = f_{x}(x) \left| \frac{dx}{dy} \right| = f_{x}\left(\frac{1}{y}\right) \frac{1}{y}$$

General Case

What if the function is not monotone (and therefore not invertible). Break it up into monotone pieces

Monotone case

Now Assume:

- ► g is differentiable
- R_X can be broken in to a finite number of intervals where g(x) is strictly monotone.

The PDF of
$$Y = g(X)$$
 is given by

$$f_Y(y) = \sum_{k=1}^n \frac{f_X(x_k)}{|g'(x_k)|} = \sum_{k=1}^n f_X(x_k) \left| \frac{\mathrm{d}x_k}{\mathrm{d}y} \right|$$
where $x_1, x_2, \dots x_n$ are all the solutions to $g(x) = y$.

Example Consider the PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad \mathbf{x} \in \mathbb{R}$$

Find the PDF of $Y = X^2$. $R_{\chi} = (-\omega_{\chi} \infty)$

. Do $f_{\chi}(y) = f_{\chi}(x_1) \left| \frac{dx_1}{dy} \right| + f_{\chi}(x_2) \left| \frac{dx_2}{dy} \right|$ $= f_{\chi}(-\sqrt{5}) \frac{1}{2\sqrt{5}} + f_{\chi}(\sqrt{5}) \frac{1}{2\sqrt{5}}$ $= \frac{1}{12\pi} \frac{1}{2\sqrt{3}} \begin{bmatrix} -\frac{(\sqrt{3})}{2} & -\frac{(\sqrt{3})}{2} \\ e & +e \end{bmatrix}$ $=\frac{1}{12\pi}\frac{1}{2\sqrt{2}}e^{-\frac{1}{2}}\frac{1}{2\sqrt{2}$

BONUS: How to simulate an RV

This is a very useful technique for numerically generating random variables from uniform ones

Let X be a random variable with invertible CDF $F_X(x)$, then $Y = F_X(X) \sim \text{Uniform}(0, 1).$

This means that

 $F_X^{-1}(\mathsf{Uniform}(0,1)) \sim X$

Proof: $y \in [0, 1]$

BONUS: How to simulate an RV

Steps (Inverse CDF method)

- 1. Find the inverse $F_X^{-1}(y)$ of the CDF $F_X(x)$ of the random variable X you want to generate
- 2. Generate $U \sim \text{Uniform}(0, 1)$ (MATLAB rand)
- 3. Calculate $F_X^{-1}(U)$
- 4. Profit

This actually works for ANY CDF (discrete or continuous) by defining

$$F_X^{-1}(y) = \inf\{x : F_X(x) = y\}$$