APMA 1650 - Spring 2021 Lecture 13

Friday, Feb 19, 2021

Summary of Continuous Random Variables

- \blacktriangleright Def: $F_X(x) = P(X \leq x)$ is absolutely continuous
- \blacktriangleright PDF: $f_X(x) = F'_X(x)$, $f_X(x) \ge 0$, $\int_{-\infty}^{\infty} f_X(x) dx = 1$
- \blacktriangleright Area Rule: $P(a \le X \le b) = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$
- Expected Value $EX = \int_{-\infty}^{\infty} x f_X(x) dx$
- \blacktriangleright LOTUS: $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
- \blacktriangleright Variance: $\text{Var}(X) = \int_{-\infty}^{\infty} (x \mu_X)^2 f_X(x) dx$

Functions of Continuous Random Variables

Suppose X is a continuous random variable and $g : \mathbb{R} \to \mathbb{R}$ is some function. Let

$$
Y = g(X)
$$

We know LOTUS

$$
EY = \int_{-\infty}^{\infty} g(x) f_X(x) \mathrm{d}x.
$$

Questions:

 \triangleright What kind of random variable is Y ?

 \blacktriangleright Is *Y* continuous?

Example 11 If so, what are
$$
F_Y(y)
$$
 and $f_Y(y)$?

Discrete Case

In the discrete case we could find the PMF of $Y = g(X)$ by

$$
P_Y(y) = \sum_{\{x \,:\, g(x) = y\}} P_X(x).
$$

$$
\mathbf{x} \in \mathbb{R}_X
$$

This works for ANY $g : \mathbb{R} \to \mathbb{R}$!

Simply sum the probabilities over all the $x \in R_X$ such that $g(x) = y$.

Continuous case

More complicated.

- $Y = g(X)$ may not be continuous anymore
- If *g* has flat parts then $g(X)$ will be a partially discrete $(i.e g(x) = const)$
- If g is not differentiable then $g(X)$ may not have a PDF.

"Ugly" cases: \bigcirc

Non continuous example (Flat parts)

If $g(x)$ has flat parts, then $Y = g(X)$ is not continuous (it will end up mixed in general).

Example: If $\{y_1, y_2, ...\} \subset \mathbb{R}$ and

$$
g(x) = \sum_{k=0}^{\infty} y_k I_{(k,k+1]}(x),
$$

where

$$
I_{(k,k+1]}(x) = \begin{cases} 1 & k < x \leq k+1 \\ 0 & \text{otherwise} \end{cases}
$$

 $Y = g(X)$ is a discrete random variable with PMF

$$
P_Y(y_k) = P(k < X \le k+1)
$$

LOTUS still works

$$
EY = \int_{-\infty}^{\infty} g(x) f_X(x) dx
$$

=
$$
\sum_{k=0}^{\infty} y_k \int_{k}^{k+1} f_X(x) dx
$$

=
$$
\sum_{k=0}^{\infty} y_k P(k < X \le k+1)
$$

=
$$
\sum_{k=0}^{\infty} y_k P_Y(y_k)
$$

What about nice *g*? CDF Method

If *g* is differentiable and has no flat parts. Then $Y = g(X)$ is again a continuous RV.

CDF Method:

- 1. Find $R_Y = g(R_X)$
- 2. Find the CDF of *Y*

$$
F_Y(y) = P(Y \le y) = \underbrace{(P(g(X) \le y))}
$$

3. Find the density

 $f_Y(y) = F'_Y(y)$

Example Suppose that $X \sim$ Uniform $(0, 1)$ and $Y = e^X$. What are $F_Y(y)$ and $f_Y(y)$?

1)
$$
R_x = [0, 1], R_y = [1, e]
$$

 $\int_{e^0}^{1} f(x) dx$

$$
2) \quad \text{if} \
$$

$$
P(Y \le y) = P(e^{x} \le y)
$$

= $P(X \le ln y) = F_x(ln y)$

 $F_{y}(y) = F_{y}(ln y)$ ye [I, e]. $=$ $ln \eta$ $(F_x(x) = x)$ $\frac{1}{\frac{1}{2}}$ $\frac{1}{\frac{1}{2}}$ $\frac{d}{d}$ $\frac{1}{2}$ $y \in \{1, e\}$ $\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \end{array}$ $\frac{1}{2}\left(\begin{matrix} 1 \\ 0 \end{matrix}\right)$ Othernse.

 $Z_y = [0, 1]$ **Example** What about $X \sim$ Uniform $(-1, 1)$ and $Y = X^2$? $P(a \le X \le b) = \frac{b-a}{1-(a)} = \frac{b-a}{2}$ $F_x(x) = P(x \le x) = P(-1 \le x \le x)$ $= \frac{2c+1}{2}$ $F_{y}(y) = P(x^{2} \le y) = P(-\sqrt{y} \le x \le \sqrt{y})$

 $F_y(y) = P(-1)^y \le x \le \sqrt{3}$
 $F_y(y) = P(-1)^y \le x \le \sqrt{3}$ $=\frac{\sqrt{3}+1}{2}$ $(-\sqrt{3})+1$ $=\frac{2\sqrt{3}}{2}$ $=\sqrt{3}$ $F_y(y) = \sqrt{y}$, $y \in (0,1)$. $f_{y}(y) = \begin{cases} \frac{1}{2} \sqrt{\frac{1}{2}} y \frac{1}{2} \cos \frac{1}{2} y \frac{1}{2} \\ 0 \cos \frac{1}{2} y \cos \frac$ ollerwier.

Method of Transformations

Another approach that gives a direct way to compute the PDF is the Method of Transformations

First Assume:

- \triangleright g is differentiable
- \blacktriangleright *g* is strictly increasing $x_1 < x_2 \Leftrightarrow g(x_1) < g(x_2)$

Let *X* be a continuous RV and $Y = g(X)$, then $f_Y(y) = \begin{cases} \frac{f_X(x)}{g'(x)} = f_X(x) \frac{dx}{dy} & \text{when } g(x) = y \end{cases}$ 0 otherwise

Proof

Since *g* is strictly increasing g^{-1} is well-defined. For each $y \in R_Y$ there is a unique $x = g^{-1}(y)$ such that $g(x) = y$

$$
F_Y(y) = P(Y \le y)
$$

= $P(g(X) \le y)$
= $P(X \le g^{-1}(y))$ strictly increasing
= $P(X \le x) = F_X(\mathbf{x}) \qquad \mathbf{z} = \int'(\mathbf{y})$

Therefore for $y \in R_Y$ and $x = g^{-1}(y)$

$$
f_Y(y) = f_X(x) \frac{dx}{dy} \text{ chain rule}
$$

= $\frac{f_X(x)}{g'(x)}$ using $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{g'(x)}$

Change of variables interpretation

We can also see this as a change of variables formula on the "measures" $f_X(x)dx$ and $f_Y(y)dy$ via

$$
y = g(x)
$$
 \Rightarrow $dy = g'(x)dx$

or

$$
\frac{f_Y(y)dy}{\lambda y} = \frac{f_X(x)dx}{d_y} \quad \Rightarrow \quad f_Y(y) = f_Y(x)\frac{dx}{dy}
$$

This explains why LOTUS still holds

$$
\int g(x) \oint_{x}(x) dx = \int_{x} \oint_{y}(y) dy.
$$

What about strictly decreasing?

Suppose that *g* is strictly decreasing

$$
x_1 < x_2 \quad \Leftrightarrow \quad g(x_1) > g(x_2).
$$

Then for $y = g(x)$

$$
F_Y(y) = P(g(X) \le y)
$$

= $P(X \ge x)$
= $1 - F_X(x)$ $\mathcal{L} = \mathcal{L}^{-1}(\mathcal{L})$

 $\operatorname{\sf{Therefore}}\nolimits\operatorname{\sf{since}}\nolimits\, g'(x) < 0$

$$
f_Y(y) = \frac{d}{dy}(1 - F_X(x)) = -f_X(x)\frac{dx}{dy}
$$

$$
= f_X(x) \left| \frac{dx}{dy} \right| = \frac{f_X(x)}{|g'(x)|}
$$

Monotone case

Now Assume:

 \blacktriangleright g is differentiable

 \blacktriangleright g is strictly monotone (either increasing or decreasing)

 $s+is+ly.$

Let X be a continuous RV and
$$
Y = g(X)
$$
, then

$$
f_Y(y) = \begin{cases} \frac{f_X(x_*)}{|g'(x^*)|} = f_X(x_*) \left| \frac{dx_*}{dq} \right| & \text{when } g(x_*) = y\\ 0 & \text{otherwise} \end{cases}
$$

Example Consider X with PDF

 $f_X(x) = \begin{cases} 4x^3 & 0 < x \le 1 \\ 0 & \text{otherwise} \end{cases}$ $R_y = g(\lbrace \circ, \iota \rbrace) = \lbrace \circ, \iota \rbrace$ What is $Y = 1/X$? $q(x) = \frac{1}{x}$ => $y = \frac{1}{x}$. $x = \frac{1}{4}$ => $\frac{dx}{dy} = \frac{-1}{2}$ $y \in [0,1]$ Therefore $\left. \begin{array}{cc} 1 \\ 1 \end{array} \right|_{\gamma}(y) = \left. \begin{array}{cc} 0 \\ 1 \end{array} \right|_{\alpha} (x) \left| \frac{dx}{dx} \right| = \left. \begin{array}{cc} 0 \\ 1 \end{array} \right|_{\alpha} (y) \left| \frac{1}{y^{2}} \right|_{\alpha}$

General Case

What if the function is not monotone (and therefore not invertible). Break it up into monotone pieces

Monotone case

Now Assume:

- \blacktriangleright g is differentiable
- \blacktriangleright R_X can be broken in to a finite number of intervals where *g*(*x*) is strictly monotone.

The PDF of
$$
Y = g(X)
$$
 is given by
\n
$$
f_Y(y) = \sum_{k=1}^n \frac{f_X(x_k)}{|g'(x_k)|} = \sum_{k=1}^n f_X(x_k) \left| \frac{dx_k}{dy} \right|
$$
\nwhere $x_1, x_2, \dots x_n$ are all the solutions to $g(x) = y$.

Example Consider the PDF

$$
f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \propto \in \mathbb{R}
$$

Find the PDF of $Y = X^2$. $R_{x} = (-a_{y} \infty)$

 56 $f_{y}(y) = \frac{f_{x}(x_1)}{d y} + \frac{f_{y}(x_2)}{d y}$ $= 1/(10^{24}) \frac{1}{2\sqrt{3}} + 1/(10^{24}) \frac{1}{2\sqrt{3}}$ $=\frac{1}{\sqrt{2\pi}}\frac{1}{2\sqrt{2}}\left[e^{-\frac{(\sqrt{2})^{2}}{2}}+e^{-\frac{(\sqrt{2})^{2}}{2}}\right]$ $=\frac{1}{12\pi}\frac{1}{2\sqrt{2}}e^{-\frac{3}{2}2}$, $e^{(-2,0)}$

BONUS: How to simulate an RV

This is a very useful technique for numerically generating random variables from uniform ones

Let X be a random variable with invertible CDF $F_X(x)$, then $Y = F_X(X) \sim$ Uniform $(0, 1)$.

This means that

 $F_X^{-1}(\textsf{Uniform}(0,1)) \sim X$

Proof: $y \in [0, 1]$

$$
P(Y \le y) = P(X \le F_X^{-1}(y))
$$

= $F_X(F_X^{-1}(y))$
= y \longrightarrow $C \circ P \circ f$ $\circ f$ \circ \circ <

BONUS: How to simulate an RV

Steps (Inverse CDF method)

- 1. Find the inverse $F_X^{-1}(y)$ of the CDF $F_X(x)$ of the random variable *X* you want to generate
- 2. Generate $U \sim$ Uniform $(0,1)$ (MATLAB [rand]((null)://(null)rand))
- 3. Calculate $F_X^{-1}(U)$
- 4. Profit

This actually works for ANY CDF (discrete or continuous) by defining

$$
F_X^{-1}(y) = \inf\{x : F_X(x) = y\}
$$