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Uniform Distribution

Uniform Distribution: X ~ Uniform(a,b), a <b
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Uniform Distribution

Expectaion and Variance: If X ~ Uniform(a,b), then
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Neat trick: Rescale

X —a
b—a

U= ~ Uniform(0, 1).

Then
X=0b-a)U+a
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Therefore




Exponential Distribution
Exponential Distribution: X ~ Exponential()\)

» Very common distribution

» Measure random waiting “time" between rare events
» Random alarm clock

» Time between arrivals at a service center
» Time between emails arriving
» Time between spike inputs to a neuron
» ) is a rate describing how frequently these events happen

» Related to Poisson distribution (same rate \)

» A continuous version of the geometric distribution



Exponential Distribution

Exponential Distribution: X ~ Exponential(\)
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where u(z) is the unit step
function

0 otherwise

u(x):{1 >0



Exponential Distribution

CDF
Fx(z) = (1—e)u(x)



Expected Value
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Variance
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Relation to Geometric distribution

We can think of an exponential random variable as a
continuous geometric distribution with rare success p = AAL.
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Memoryless Property

» X ~ Exponential(\) is a memoryless random variable,
just like the geometric

» An exponential alarm clock doesn't change it's likelihood
of going off given that you know it hasn't gone off yet

» No matter how long you have already waited X > a, the
probability that you have to wait x amount longer is
always the same P(X > x).

P(X>z+4a|lX >a)=P(X >z), ax>0



Memoryless proof

Proof:
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Exponential is the ONLY memoryless continuous RV



Relation to Poisson Distribution

X, X2 X3 X4

» Time differences between rare events are independent
Exponential(\), Xi, Xo, ...

» Y ~ Poisson(At). Number of events happening in [0, ¢]

X = first rare event time
P(X >t) = P(no events in [0,t]) = Py(0)
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