APMA 1650 - Spring 2021 Lecture 14

Wed, Feb 24, 2021

Uniform Distribution

$$
\int_{a}^{b} \frac{1}{b-a} dx = \frac{b-a}{b-a} = 1
$$

Uniform Distribution: $X \sim$ Uniform (a, b) , $a < b$

$$
f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}
$$

$$
F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a, b] \\ 1 & x > b \end{cases}
$$

$$
F\left(\bigtimes \in \mathbb{R}, \mathcal{F}\right) = \begin{cases} \frac{x-a}{b-a} & x \in [a, b] \\ 0 & x > b \end{cases}
$$

Uniform Distribution

Expectaion and Variance: If $X \sim$ Uniform (a, b) , then

$$
EX = \frac{b+a}{2}, \quad \text{Var}(X) = \frac{(b-a)^2}{12}
$$

$$
EU = \frac{1}{2}, \quad Var(U) = \frac{1}{12}
$$
\n
$$
W \sim Unifform(0,1) = Shandardonj
$$
\n
$$
W = \int_{0}^{1} u^{y} \, du = \int_{0}^{1} u^{2} \, du = \int_{0}^{1} u^{3} \, du = \int_{0}^{1} u^{3} \, du = \int_{0}^{1} u^{2} \, du = \int_{0}^{1} u^{3} \, du = \int_{0}^{1} u^{
$$

Neat trick: Resca

ale
\n
$$
V \sim \text{Unifom}(\alpha, b)
$$
\n
$$
U = \frac{X - a}{b - a} \approx \text{Uniform}(0, 1).
$$

Then

$$
X = (b - a)U + a \qquad \sim \text{Unif}(a, b)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
EX = (b - a)EU + a, \quad \text{Var}(X) = (b - a)^2 \text{Var}(U)
$$

Therefore

$$
EX = \frac{(b-a)}{2} + a = \frac{b+a}{2}, \quad \text{Var}(X) = \frac{(b-a)^2}{12}
$$

Exponential Distribution

Exponential Distribution: $X \sim$ Exponential(λ)

- \blacktriangleright Very common distribution
- **INEXT Measure random waiting "time" between rare events**

 \top \sim

- \blacktriangleright Random alarm clock
- \blacktriangleright Time between arrivals at a service center
- \blacktriangleright Time between emails arriving
- \blacktriangleright Time between spike inputs to a neuron
- \blacktriangleright λ is a rate describing how frequently these events happen
- Related to Poisson distribution (same rate λ)
- \blacktriangleright A continuous version of the geometric distribution

Exponential Distribution

Exponential Distribution: $X \sim$ Exponential(λ)

Exponential Distribution

Expected Value

 $X \sim E_{x}$ panential (a).

 $EX = \frac{1}{\lambda}$ $FX = \int_{-\infty}^{\infty} x f_{x}(x) dx = \int_{0}^{\lambda} x a e^{-ax} dx$ $\frac{1}{2} \int_{0}^{1} \frac{1}{2} \, dx$ Artogradur by purb
= a) $x e^{ax} dx = -x e^{-ax} \int_{0}^{x} - a \int_{0}^{1} (-\frac{1}{2}e^{-ax}) dx$
= a) $x e^{ax} dx = -x e^{-ax} \int_{0}^{x} - a \int_{0}^{1} (-\frac{1}{2}e^{-ax}) dx$ $=\int_{0}^{\infty}e^{-2x}dx = \frac{-1}{\lambda}e^{-2x}\Big|_{0}^{\infty} = \frac{1}{\lambda}$

Variance

Relation to Geometric distribution

We can think of an exponential random variable as a continuous geometric distribution with rare success $p = \lambda \Delta t$.

 $X^{\Delta t} \sim$ Geometric($\lambda \Delta t$) $x = k\Delta +$ Δt Let $x = k\Delta t$ and $P(X^{\Delta t} \leq k) = 1 - (1 - \lambda \Delta t)^k$ $= 1 - (1 - \lambda \Delta t)^{x/\Delta t}$ $\rightarrow 1 - e^{-\lambda x}$ as $\Delta t \rightarrow 0$ $X^{\Delta t}$ $\frac{1}{\lambda} \approx \mathsf{Exponential}(\lambda)$

Memoryless Property

- \blacktriangleright $X \sim$ Exponential(λ) is a memoryless random variable, just like the geometric
- An exponential alarm clock doesn't change it's likelihood of going off given that you know it hasn't gone off yet
- \blacktriangleright No matter how long you have already waited $X>a$, the probability that you have to wait *x* amount longer is always the same $P(X > x)$.

$$
P(X > x + a | X > a) = P(X > x), \quad a, x \ge 0
$$

Memoryless proof

Proof:

$$
P(X > x + a|X > a) = \frac{P(X > x + a, X \searrow a)}{P(X > a)}
$$

\n
$$
= \frac{P(X > x + a)}{P(X > a)}
$$

\n
$$
= \frac{1 - F_X(x + a)}{1 - F_X(a)}
$$

\n
$$
= \frac{e^{-\lambda(x + \lambda)}}{e^{-\lambda x}}
$$

\n
$$
= e^{-\lambda x}
$$

\n
$$
= P(\lambda > x)
$$

Exponential is the ONLY memoryless continuous RV

Relation to Poisson Distribution

- ▶ Time differences between rare events are independent Exponential (λ) , X_1, X_2, \ldots
- \blacktriangleright *Y* ~ Poisson(λt). Number of events happening in [0, t]

 $X =$ first rare event time

$$
P(X > t) = P(\text{no events in } [0, t]) = P_Y(0)
$$

= $e^{-\lambda t} \frac{(\lambda t)^0}{0!} = e^{-\lambda t}$
= $1 - F_X(t)$