APMA 1650 - Spring 2021 Lecture 16

Mon, Mar 1st, 2021

Mixed Random Variables

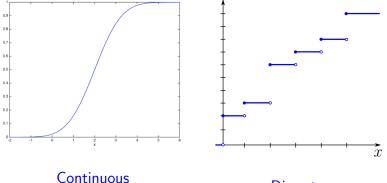
Today we will

- Introduce the generalized PDF via the delta function
- Introduce mixed random variables

Mixed Random Variables

Recall the CDF for continuous vs discrete RV \boldsymbol{X}

$$F_X(x) := P(X \le x)$$



Differentiable

Lets take the derivative anyway

Consider the unit step function

1

What is the derivative?

$$\frac{\mathrm{d}}{\mathrm{d}x}u(x) = \delta(x) = \begin{cases} \infty & x = 0\\ 0 & \text{otherwise} \end{cases}$$

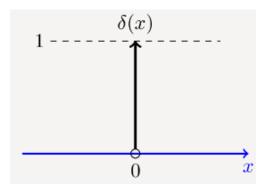
Delta "function" Not really a function.

Delta function

Note, by the "FTC" that

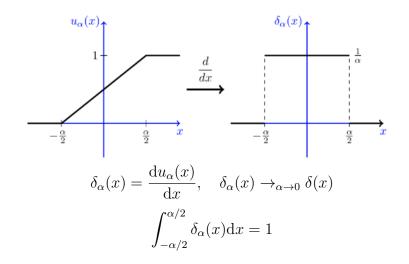
$$"\int_{-\epsilon}^{\epsilon} \delta(x) \mathrm{d}x" = \int_{-\epsilon}^{\epsilon} \frac{\mathrm{d}}{\mathrm{d}x} u(x) \mathrm{d}x = u(\epsilon) - u(-\epsilon) = 1$$

So it is like a PDF will all the probability at zero



Approximating the delta function

Best understood by approximation u(x) by $u_{\alpha}(x)$



Moving the delta function around

We can shift the location of the delta function by shifting u

The most important property

The delta "function" has an important property that makes it very useful

The fundamental property of delta functions Let g be a continuous function, then $\int_{-\infty}^{\infty} g(x)\delta(x-x_0)dx = g(x_0).$

Can replace the integral above with

$$\int_{x_0-\epsilon}^{x_0+\epsilon} g(x)\delta(x-x_0)\mathrm{d}x$$

Example

Let
$$g(x) = 2(x^2 + x)$$
, what is $\int_{-\infty}^{\infty} g(x)\delta(x-1)dx$?

Summary

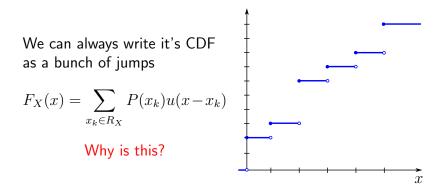
The delta "function" has the following properties 1. $\delta(x) = \frac{\mathrm{d}}{\mathrm{d}x}u(x) = \begin{cases} \infty & x = 0\\ 0 & \text{otherwise} \end{cases}$ 2. For any continuous g(x), $x_0 \in \mathbb{R}$ and $\epsilon > 0$. $\int_{x_0-\epsilon}^{x_0+\epsilon} g(x)\delta(x-x_0)\mathrm{d}x = g(x_0).$

Note that choosing g(x) = 1 implies that

$$\int_{-\infty}^{\infty} \delta(x - x_k) \mathrm{d}x = 1.$$

Back to discrete random variables

Consider a discrete RV X with range $R_X = \{x_1, x_2, x_3, \ldots\}$

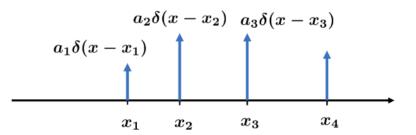


Generalized PDF

Lets take the derivative of that CDF

$$f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x)$$

= $\frac{\mathrm{d}}{\mathrm{d}x} \sum_{x_k \in R_X} P_X(x_k) u(x - x_k)$
= $\sum_{x_k \in R_X} P_X(x_k) \delta(x - x_k)$



Summary

Let X be a discrete RV, then its generalized PDF is given by

$$f_X(x) = \sum_{x_k \in R_X} P_X(x_k)\delta(x - x_k).$$

Can you show that this is a valid PDF?

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1?$$

Valid PDF?

Expectation

What happens with the expectation

$$EX = \int_{-\infty}^{\infty} x f_X(x) \mathrm{d}x?$$

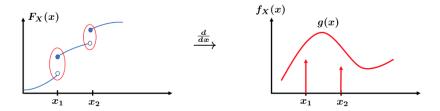
Example From the HW

$$F_X(x) = \begin{cases} 0 & x < -2\\ 1/3 & -2 \le x < -1\\ 1/2 & -1 \le x < 1\\ 5/6 & 1 \le x < 2\\ 1 & 2 \le x \end{cases}$$

What is $f_X(x)$?

Mixed Random variables

In general a Random variable can be a mix of discrete and continuous parts



$$\frac{\mathrm{d}}{\mathrm{d}x}F_X(x) = P_X(x_1)\delta(x - x_1) + P_X(x_2)\delta(x - x_2) + g(x)$$

Mixed RVs

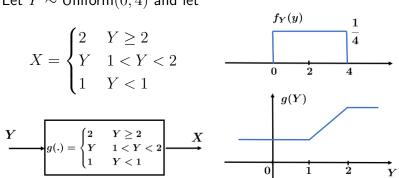
In general a mixed Random variable has the generalized PDF

$$f_X(x) = \underbrace{\sum_k P(X = x_k)\delta(x - x_k)}_{\text{discrete part}} + \underbrace{g(x)}_{\text{continuous part}}$$

Note that we still require that

$$\int_{-\infty}^{\infty} f_X(x) dx = \sum_k P(X = x_k) + \underbrace{\int_{-\infty}^{\infty} g(x) dx}_{\leq 1} = 1$$

Example



Let $Y \sim \mathsf{Uniform}(0,4)$ and let

Find the CDF and (generalied) PDF of X. Find EX and Var(X).

Example

Let
$$f_X(x) = \frac{1}{3}\delta(x+1) + \frac{1}{6}\delta(x-1) + \frac{1}{2}e^{-x}u(x).$$

1. Find
$$P(X = -1)$$
, $P(X = 0)$ and $P(X = 1)$

2. Find $P(X \ge 0)$

3. Find
$$P(X=1|X\geq 0)$$

4. Find EX and Var(X).