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1 Introduction
The goal of this course (and these lecture notes) is to give a concise relatively self-contained introduction to
the field of stochastic partial differential equations (SPDE’s) aimed at graduate students. We will mainly be
taking the approach of Da Prato and Zabczyk [DPZ14] and study a large class of SPDE which can be view
as abstract stochastic evolution equation in a separable Hilbert space H of the form

dX = (AX +B(X))dt+Q(X)dW, (1.1)

where W is a certain generalization of a Wiener process in H , A is a certain dissipative operator and B(x)
andQ(x) are appropriate nonlinear functions onH (to be described in more detail later). Abstractly we may
view a solution t 7→ X(t) to (1.1) as a random trajectory in a H with certain statistical properties (such as
the Markov property, and certain path-wise regularity properties). Such equations include a broad class of
interesting Stochastic PDE that have some form of regularizing or smoothing effect, typically parabolic in
nature. While there are many interesting examples of hyperbolic SPDE (such as stochastic wave equations,
stochastic continuity equations or stochastic conservation laws), these can be tricky to deal with in gener-
ality (due to issues with regularity) and can go well beyond the scope of this course. We will also stay in
the regime where the nonlinearities are well behaved on the space that the solutions live in (i.e. Lipschitz
continuous) and will typically avoid the case when the regularity of the solution is X(t) is not enough to
make sense of nonlinearities F (X) (as is the case of singular SPDE with space-time white noise). Addition-
ally, if time permits we will cover some of the basic ergodic theory and limit theorems of Markov processes
associated to (1.1) such as existence and uniqueness of stationary measures, geometric ergodicity, the law
of large numbers and the central limit theorem.

Much of the material in these notes will draw upon material in Da Prato/Zabczyk’s book [DPZ14] as
well as the lecture notes by Martin Hairer http://www.hairer.org/notes/SPDEs.pdf. However
I will have my own take on the topic and will introduce topics not-contained in either book. It will be
assumed that the students are familiar with and have taken graduate level courses in Analysis, Functional
Analysis, and Probability. However, I will include a brief refresher for students who need a reminder.

1.1 Examples
Example 1.1 (White Noise). The most fundamental object that we will study in this course is the Gaussian
white noise ξ(t, x) (or cylindrical Wiener process). In the context of SPDE on Rn we will view ξ(t, x) for
each (t, x) ∈ R+ × Rn as a centered Gaussian random variable completely decorrelated in space and time
i.e.

E ξ(t, x)ξ(s, y) = δ(t− s)δ(x− y).

Alternatively we can can interpret such an expression in the sense of distribution. That is if we define for each
f ∈ C∞c (R+×Rn), 〈f, ξ〉 the pairing of f and ξ on R+×Rn we have for test functions f, g ∈ C∞c (R+×Rn)

E〈f, ξ〉〈g, ξ〉 = 〈f, g〉.

Note that since ξ is Gaussian, specifying it’s mean and covariance should characterize it completely. How-
ever in order to make this more precise, we will need the machinery of Gaussian measures Hilbert (and
Banach spaces). This will be covered in great detail later.

Example 1.2 (Stochastic heat equation). The stochastic heat equation is one of the simplest non-trivial
examples of a linear stochastic PDE. On Rn it is given by

∂tf −∆f = ξ
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f(t, x) is a scalar quantity (modeling a temperature of concentration) and ξ(t, x) is a homogeneous (shift
invariant) mean zero Gaussian noise, white in time and colored in space satisfying

Eξ(t, x)ξ(s, y) = δ(t− s)C(x− y).

where C(x) is some covariance kernel describing the range of spatial correlations. This equation actually
arises quite naturally as many particle limits of certain stochastic particle systems, especially when looking
at fluctuations about the limits of certain empirical densities. We will see that depending on the regularity
of C(x) and the dimensionality of the problem, this equation may not have function valued solutions. We
will return to a formal analysis of this equation in the next section.

Example 1.3 (Stochastic reaction diffusion equation). The stochastic reaction diffusion equation on Rn can
be seen as a nonlinear perturbation of the stochastic heat equation given by

∂tf + F (f)−∆f = ξ.

here F (f) is a polynomial nonlinearity acting pointwise on f and ξ is as in the previous example. The
nonlinearity models a “reaction” effect, causing the solution to grow or decay depending on it’s size. This
effect competes with the “diffusion” effect that wants to spread everything out. The resulting behavior
is rather complicated and can lead traveling fronts with very intricate patterns. As a stochastic PDE, the
nonlinearity poses certain problems when C(x) is rough since nonlinear function F (f) are not well-defined
on distributions or measures. In general we will only consider equations which have nonlinearities F (f)
which are locally Lipschitz continuous with respect to the topology that we expect the solution u to be
continuously evolving in.

Example 1.4 (Stochastic Navier-Stokes equations). The stochastic Navier-Stokes equations on Rn (here
typically n = 2, 3) is one of the most widely studied nonlinear stochastic PDE. It governs the motion of an
incompressible velocity field u(t, x) ∈ Rn given by

∂tu+ u · ∇u+∇p−∆u = ξ, div u = 0.

Here p is the pressure, which enforces the divergence-free conditions (can think of it as a Lagrange multi-
plier). In dimension n = 2 the equations above are globally well-posed for suitably regular noise. However,
in dimension n = 3 well-posedness is an open problem (with or with out noise). At best, one has global
existence of weak solutions (distributional solution) in this case. For the stochastic problem we will see that
lack of uniqueness for the deterministic problem brings a whole host of other problems on the stochastic
side. In the stochastic case one only has weak martingale solutions (probabilistically weak) which bring
another level of complexity.

The dynamics of the Navier-Stokes equations (when well-defined) can be extremely chaotic, even with
the presence of the Laplacian (this is the essence of the turbulence problem). The addition of noise can help
“tame” this chaos by understanding it in a statistical sense and allowing one to put probability measures on
the dynamics and study certain stationary measures associated with the long-time behavior.

1.2 Formal Analysis of the stochastic heat equation
Lets study the stochastic heat equation

∂tf −∆f = ξ

more carefully. It is well known that when ξ = 0, the initial value problem for this equation can be solved
by convolution of the initial data with the heat kernel

u(t, x) =

ˆ
Rn
K(t, x− y)u0(y)dy.
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where

K(t, x) :=
1

(4πt)n/2
exp

(
−|x|

2

4t

)
.

This action of the heat kernel on a function forms a semi-group S(t) of operators (we will spend more
time on this later) defined by

(S(t)f)(x) := (K(t, ·) ? f)(x) =

ˆ
Rn
K(t, x− y)f(y)dy.

Proceeding formally and presuming that ξ(t, x) is a nice function (which it’s not), we can write the the
solution u(t, x) to such an equation can be written using Duhamel’s formula (or variation of constants) as

u(t) = S(t)u0 +

ˆ t

0
S(t− s)ξ(s, ·)ds.

The quantity
´ t

0 S(t−s)ξ(s, ·)ds is referred to as a stochastic convolution and is a fundamental object in the
study of such SPDE (we will study this object more carefully in later sections). Assuming the initial data
u0 = 0 for now. The solution u(t, x) can be written as a space time convolution

u(t, x) =

ˆ t

0

ˆ
Rn
K(t− s, x− y)ξ(s, y)dyds. (1.2)

Of course such a formula needs justification due to the potentially singular nature of ξ in time (it is not a
well-defined function). It is reasonable to expect though, due to the presence of the convolution, that such a
solution is significantly smoother than the noise forcing it.

The formula (1.2) tells us that the quantity u(t, x) is a mean zero Gaussian variable (being a sum of
mean zero Gaussians). However, it’s covariance is more complicated. Additionally, due the the stationarity
of ξ(s, x) in space (invariance of the statistics under space shifts) u is also stationary in space. Indeed lets
compute the variance

E|u(t, x)|2 =

ˆ t

0

ˆ t

0

ˆ
Rn

ˆ
Rn
K(t− s, x− y)K(t− s′, x− y′)Eξ(s, y)ξ(s′, y′)dydy′dsds′

=

ˆ t

0

ˆ
Rn

ˆ
Rn
K(t− s, x− y)K(t− s, x− y′)C(y − y′)dydy′ds

=

ˆ t

0

ˆ
Rn

ˆ
Rn
K(s, y)K(s, y′)C(y − y′)dydy′ds

=
1

(4π)n

ˆ t

0

Φ(s)

sn
ds,

where we have defined

Φ(s) =

ˆ
Rn

ˆ
Rn

exp
(
−(|y|2 + |y′|2)/4s

)
C(y − y′)dydy′,

and we have used change of variables x − y → y, x − y′ → y′ and t − s → s. Therefore we see that
u(x, t) only has finite variance if s 7→ Φ(s)/sn is integrable on [0, t] for each t. When such a quantity is not
integrable, we do not expect u(t, x) to have well-defined pointwise values. Indeed, when noise is spatially
white C(y − y′) = δ(y − y′), then it is easy to see that

Φ(s) = (2πs)n/2
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and therefore Φ(s)/sn ≈ s−n/2, which is only integrable near s = 0 in dimension n = 1. Consequently,
u(t, x) only makes sense pointwise (or as a function) in one dimension. Additionally if C(y) is a locally
integrable function which is homogeneous of degree −α (i.e. for any λ > 0, C(λx) = λ−αC(x)), then by
change of variables

Φ(s) = sn−α/2Φ(1)

and it follows that Φ(s)/sn ≈ s−α/2, which is only integrable when α < 2. Consequently if C(x) is too
singular at 0 (even if is it locally integrable) then u(t, x) is not a well defined function either (for instance in
dimension n ≥ 3 if n− 1 < α < n and C(y) = |y|−α).

However, it is possible to make sense of u(t, x) as a distribution in any dimension. Indeed, take ϕ(x) to
be a smooth, compactly supported test function and study the pairing

〈u(t), ϕ〉 :=

ˆ
Rn
u(t, x)ϕ(x)dx =

ˆ t

0

ˆ
Rn

ˆ
Rn
K(t− s, x− y)ξ(s, y)ϕ(x)dydx.

Changing the order of integration, we can write such a solution as

〈u(t), ϕ〉 =

ˆ t

0

ˆ
Rn
v(t− s, y)ξ(s, y)dsdy

where v(s, y) is a solution of the heat equation

∂tv −∆v = 0

with initial data v(0, x) = ϕ(x). Again, computing the variance as we did previously, we find

E|〈u(t), ϕ〉|2 =

ˆ t

0

ˆ
Rn

ˆ
Rn
v(s, y)v(s, y′)C(y − y′)dydy′ds

Since v(t, x) is a solution to the heat equation with smooth initial data ϕ(x). Consequently an application
of Young’s convolution inequality (see here) implies

E|〈u(t), ϕ〉|2 ≤
(ˆ t

0

ˆ
Rn
v(s, y)2dyds

)(ˆ
Rn
C(y)dy

)
.

Since ‖v(t)‖L2 ≤ ‖ϕ‖L2 , such a quantity is finite if C(y) is integrable (including a delta function), meaning

E|〈u(t), ϕ〉|2 . ‖ϕ‖2L2 . (1.3)

This suggest that when n ≥ 2 then u(t, x) can be made sense of as a distribution (i.e. when paired against a
suitably regular test function).

Remark 1.5. It may be tempting to conclude that (1.3) would imply that u(t) is actuallyL2-valued when ξ is
a space-time white noise. However, this is not true since such a statement would require proving something
like

E

(
sup

‖ϕ‖L2=1
|〈u(t), ϕ〉|2

)
. 1,

which cannot be obtained from the analysis above (and is in fact not true).
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2 Preliminaries
The goal of this section is to recall some preliminaries and notation from measure theory and probability.
Much of this is standard, and some of the proofs will be omitted for brevity. A student well-versed in
measure theory and probability can safely skip this section and return to it when needed.

In what follows we will denote (Ω,F ) a measurable space, that is Ω is a set (any set) and F is a
sigma-algebra of subsets of Ω. Recall a sigma-algebra F is a family of subsets that is closed under taking
countable unions and complements. All subsets If one takes the view the Ω is a configuration space of all
possible ”events”, then one can think of F as the set of all well-formed logic statements about events in Ω.

2.1 Random variables in Banach spaces
Let (U ,G ) be another measurable space, then a U-valued random variable X is a measurable mapping from
Ω to U in the sense that for each A ∈ G

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} ∈ F .

In other words, the question of whether X belongs to a certain set A ∈ G must be well-formed statement
belonging to F .

Remark 2.1. The issue with measurability is not just a technical one. Indeed, if U = R, then for any
A /∈ F , the indicator function 1A defined by

1A(ω) =

{
1 ω ∈ A
0 ω /∈ A

.

is not measurable. It may seem feasible that one could simply add A to F and then “close” F with respect
to that new set. However, there may always be more non-measurable sets due to the fact that F must be
closed under countable unions and complements. Of course, one could start with the power set 2Ω, which is
also a sigma-algebra which contains all subsets of Ω. However, it is well-known that unless Ω is a countable
space, it is “impossible” to define a probability measure P defined on all of 2Ω, making the measurable
space (Ω, 2Ω) rather useless in probability theory. An example of a non-measurable set on [0, 1] with the
Lebesgue sigma-algebra was first produced by Vitali using the axiom of choice. The construction of such a
set is standard in most analysis text books (see for instance [Roy88, Fol99]).

In general, we will require a little more structure on the space (U ,G ). Namely, we would like a notion of
convergence of one random variable to another. We will achieve this by taking U to a be a separable Banach
space, namely a complete normed linear space, with norm ‖·‖, and a countable dense subset U0 = {uk}k∈N.
We will also take G = B(U) to be the Borel σ-algebra of U , defined to be the smallest sigma-algebra that
contains the balls

BR(u0) = {u ∈ U : ‖u− u0‖ ≤ r},

for each u0 ∈ U and r ≥ 0. Denote the dual of U by U∗, defined to be the Banach space consisting of all
continuous linear functionals on U and let ‖ · ‖∗ be it’s norm defined by

‖`‖∗ = sup
‖u‖=1

`(u).

Remark 2.2. Note that we do not assume that U is reflexive (i.e. that U∗∗ = U), since in general it is not
needed and is not true in many interesting examples.

Example 2.3. Let us briefly recall some examples of Banach spaces and their properties.
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• The spaces Lp(X , µ) for any countably generated measure space (X , µ) are separable reflexive Ba-
nach spaces for p ∈ (1,∞).

• The space L1(X , µ) (in the above setting) is separable , but not reflexive (it’s dual is L∞).

• The space L∞(X , µ)(in the above setting) is neither separable, nor reflexive (it’s dual is the space of
finitely additive set functions).

• The Sobolev space W s,p(Rn) is a separable, reflexive Banach space for p ∈ (0,∞).

• The space Cb(X ) of bounded continuous functions on a compact topological space X is separable,
but not reflexive (it’s dual isMb(X ))

• The spaceMb(X ) of bounded Radon measures on a compact topological space X is separable if X
is, but not reflexive.

• The space Cb(X ) of continuous functions on a non-compact (but locally compact) space X is neither
separable nor reflexive.

• Every Hilbert spaceH is reflexive by the Riesz representation theorem.

Recall that the weak topology on a Banach space U is the weakest topology such that all linear func-
tionals ` ∈ U∗ are continuous. We denote [U ]w the space U equipped with it’s weak topology. The Borel
sigma-algebra B([U ]w) is then defined to be the smallest sigma-algebra generated by sets of the form

{u ∈ U : `(u) ≤ r}, (2.1)

where ` ∈ U∗ and r ≥ 0. In general the sigma-algebras B(U) and B([U ]w) may be different, with the
obvious inclusion B([U ]w) ⊆ B(U) (since the weak topology is strictly smaller than the strong topology).
However, when U is separable, the two sigma-algebras are the same.

Proposition 2.4. Let U be separable. Then B(U) = B([U ]w).

Proof. It is a straightforward consequence of separability (exercise 2.1) that there exists a sequence {`k}k∈N ⊂
U∗ with ‖`k‖∗ = 1 such that for each u ∈ U

‖u‖ = sup
k
`k(u).

It follows by a simple check that this implies the identity

{u ∈ U : ‖u− u0‖ ≤ r} =
⋂
j≥0

⋃
k∈N
{u ∈ U : `k(u− u0) ≤ r + 1/j}.

Since every ball is a countable union and intersection of sets of the form (2.1), it follows that B(U) ⊆
B([U ]w).

Exercise 2.1. Show that if U is a separable Banach space then there exists a sequence {`n}n∈N ⊂ U∗ such
that

‖u‖ = sup
n∈N

`n(u).
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Remark 2.5. Note that the result of Proposition implies that if U is separable, then X is a U valued ran-
dom variable if and only if for each ` ∈ U∗, `(X) is a real-valued random variable (in fact it suffices to
check against a certain countable set {`n}n∈N). Intuitively this means that a U valued random variable is
determined by linear “measurements” on it. This idea is very powerful, and will serve for the basis of our
definition of a Gaussian measure on a separable Banach space later. It is also one of the main reasons why
separability is assumed.

It it a standard fact that linear combinations of random variables remain random variables (in terms of
measurability). Additionally measurable functions of random variables obviously remain random variables.
In general it is convenient to have a strategy to determine whether a given function X : Ω → U is actually
measurable (apart from Proposition 2.4). Indeed taking pointwise limits of random variables gives a very
useful approach to determining measurability.

Proposition 2.6. Let U be a separable Banach space and let {Xn}n∈N be a sequence of U-valued random
variables defined on (Ω,F ) (measurable with respect to B(U)). If X : Ω → U is a function such that for
each ω ∈ Ω and ` ∈ B∗

lim
n→∞

|`(Xn(ω)−X(ω))| = 0,

then X is a random variable (i.e. measurable with respect to B(U)).

Proof. The proof is fairly standard. First, note that in light of Proposition 2.4 it is sufficient to show that for
each ` ∈ U∗ and r > 0 the set {ω ∈ Ω : `(X(ω)) ≤ r} belongs to F . In light of this, and that fact that

`(X) = lim
n→∞

`(Xn) = inf
n

sup
k≥n

`(Xk),

it is not hard to show that

{ω ∈ Ω : `(X(ω)) ≤ r} =
⋂
j≥0

⋂
n∈N

⋃
k≥n
{ω ∈ Ω : `(Xk(ω)) ≤ r + 1/j}.

By assumption {ω ∈ Ω : `(Xk(ω)) ≤ r} belongs to F , therefore we are done because we have expressed
{ω ∈ Ω : `(X(ω)) ≤ r} as a countable union and intersection of sets in F .

Remark 2.7. Note that the above approximation is pointwise and not pointwise almost everywhere. The
subtle difference between the two modes of convergence depends on whether the underlying probability
space (Ω,F ,P) is complete. Namely that all subsets of measure zero sets are measurable. Currently we
hace made no assumptions of completeness of the probability space.

It is also useful to approximate any U-valued random variable by simple ones. Recall, a simple random
variable is a random variable that takes countably many values. Indeed any simple random variable X can
be represented as

X(ω) =
∑
k∈N

uk1Ak(ω),

where {uk}k∈N ⊂ U and {Ak}k∈N ⊂ F . Then we have the following approximation theorem.

Proposition 2.8. Let U be a separable Banach space and let X be a U-valued random variable. Then there
exists a sequence {Xn}n∈N of simple random variables such that

‖Xn(ω)−X(ω)‖ → 0, as n→∞ monotonically.
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Proof. Again the proof is elementary. Let {uk}k∈N be a separable subset and for each n, k ≤ n, define the
set

V n
k = {u ∈ U : ‖u− uk‖ ≤ min

j≤n
‖u− uj‖}.

Note that {V n
k }k≤n forms a “Voronoi” partition of U and satisfies

⋃
k≤n V

n
k = U . We then define the simple

functions {Xn}n∈N by
Xn(ω) =

∑
k≤n

uk1{X(ω)∈V nk }.

The proof now follows from the fact that

‖Xn(ω)−X(ω)‖ ≤
∑
k≤n
‖X(ω)− uk‖1{X(ω)∈V nk } = min

j≤n
‖X(ω)− uj‖,

which goes to 0 monotonically as n→∞ by separability.

Finally, we introduce another powerful approach developed by Dynkin for determining whether a set or
mapping is measurable, as well as when two probability measures are equal. We say a collection of subsets
K ⊂ Ω form a π-system if ∅ ∈ K and if A,B ∈ K , then A ∩ B ∈ K . The following propositon will
come in very useful.

Proposition 2.9. Let P1 and P2 be probability measures on (Ω,F ) and let K be a π-system such that F
is the smallest sigma-algebra containing K . If P1 = P2 on K then P1 = P2 on F .

Proof. The proof can be found in [DPZ14] Prop 1.5.

2.2 Bochner integral
Recall a probability measure P on (Ω,F ) is a non-negative set function on F which is sigma-additive
(countably additive on disjoint sets) and has unit mass P(Ω) = 1. The triple (Ω,F ,P) is usually referred
to as an abstract probability space.

Let U be a separable Banach space, and let X be a U-valued random variable. Our goal is to define the
notion of an integral of X (or expectation) with respect to P, denoted by

EX =

ˆ
Ω
XdP =

ˆ
Ω
X(ω)P(dω).

The above integral of a Banach space valued function is referred to as the Bochner integral and is a general-
ization of the Lebesgue integral to vector valued quantities. Naturally we can define it on simple functions

X =
∑
k≤n

uk1Ak

by the identity ˆ
Ω
X(ω)P(dω) =

∑
k≤n

ukP(Ak).

Obviously the properties of linearity and additivity hold here. Additionally, the triangle inequality easily
implies that ∥∥∥∥ˆ

Ω
XdP

∥∥∥∥ ≤ ˆ
Ω
‖X‖dP, (2.2)

which directly relates the Bochner integral of X to the Lebesgue integral on ‖X‖.
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In general, we would like to extend this integral to general U-valued random variables. In light of (2.2)
we say that a U-valued random variable X is Bochner integrable if ‖X‖ is Lebesgue integrable with respect
to P. By Proposition it readily follows that we can approximate X by simple functions {Xn}n∈N and
therefore ∥∥∥∥ˆ

Ω
XndP−

ˆ
Ω
XmdP

∥∥∥∥ ≤ ˆ
Ω
‖Xn −Xm‖dP→ 0

as n,m→∞ by the dominated convergence theorem for the Lebesgue integral. Consequently
{´

ΩXndP
}
n∈N

is a Cauchy sequence and therefore has a limit. This implies that we can define the Bochner integral of X as
ˆ

Ω
XdP := lim

n→∞

ˆ
Ω
XndP. (2.3)

It is simple to check that this definition is independent of the approximation chosen, and that linearity,
additivity, and the triangle inequality (2.2) still hold.

Remark 2.10. Many important theorems for the Lebesgue integral carry over to the Bochner integral. In
particular, Lebesgue dominated convergence and Fubinis Theorem also hold for the Bochner integral. (see
[Yos95] for more details)

Exercise 2.2. Show that the definition (2.3) is independent of the approximation chosen, as long as
´

Ω ‖X−
Xn‖dP→ 0, and that linearity, additivity, and the triangle inequality (2.2) still hold.

In general, given P, each U-valued random variable X gives rise to a measure on U called it’s law
defined by

Law(X)(A) := P{ω ∈ Ω : X(ω) ∈ A},

for each A ∈ B(U).

Proposition 2.11 (Change of variables). Let X be a random variable with values in a separable Banach
space U and denote it’s law by µ = Law(X). Additionally, let F be continuous mapping between separable
Banach spaces U and V (equipped with their Borel sigma-algebra) which is Bochner integrable with respect
to µ. Then F (X) is Bochner integrable with respect to P and the following formula holds

ˆ
Ω
F (X)dP =

ˆ
U
F (u)µ(du),

where both integrals are interpreted as Bochner integrals

Proof. The proof follows again by simple function approximation using the approximation from the proof
of Proposition 2.8,

Xn(ω) =
∑
k≤n

uk1{X(ω)∈V nk }.

to see that ˆ
Ω
F (Xn)dP =

∑
k≤n

F (uk)P{X(ω) ∈ V n
k } =

∑
k≤n

F (uk)µ(V n
k ) =

ˆ
U
Fn(u)µ(du).

where Fn is a simple function approximation of F (u) defined by

Fn(u) =
∑
k≤n

F (uk)1V nk (u).
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The rest of the argument is follows as in the construction of the Bochner integral after realizing that

F (Xn) =
∑
k≤n

F (uk)1X∈V nk

is also a monotonic simple function approximation of F (X) since

‖F (Xn)− F (X)‖ ≤
∑
k≤n
‖F (uk)− F (X)‖1X∈V nk ≤ sup

k≤n
sup
u∈V nk

|F (uk)− F (u)|,

which goes to zero monotonically by separability and the continuity of F . Passing the limit as n → ∞ in
the simple function approximations gives the result.

Finally Bochner integrals behave well with respect to action under linear functionals.

Proposition 2.12. LetX be a Bochner integrable random variable with values in a separable Banach space
U and let ` ∈ U∗. Then

`

(ˆ
Ω
XdP

)
=

ˆ
Ω
`(X)dP.

Proof. Again use simple function approximation and note that

`

(ˆ
Ω
XndP

)
=

ˆ
Ω
`(Xn)dP.

and that `(Xn) is also a simple function approximation of `(X) which converges monotonically |`(Xn) −
`(X)| → 0. We can then pass the limit as n→∞ on both sides to conclude.

2.3 Conditional expectation
Just as with the real valued case, it is possible to define the Bochner integral of real valued random variables,
it is possible to define the conditional expectation for Bochner integrable random variables taking values in
a separable Banach space U .

Proposition 2.13. Let X be a Bochner integrable random variable on a probability space (Ω,F ,P) with
values in a separable Banach space U , and let G ⊂ F be a sub sigma-algebra. Then there exists a P almost
surely unique random variable

E[X|G ]

defined on (Ω,G ,P) called the conditional expectation of X with respect to G such that for all A ∈ G

ˆ
A
XdP =

ˆ
A
E[X|G ]dP. (2.4)

Moreover we have
‖E[X|G ]‖ ≤ E[‖X‖|G ].

Proof. The uniqueness is left as an exercise. Consider the simple random variable

Xn =
∑
k≤n

uk1Ak

Then we define
E[Xn|G ] =

∑
k≤n

ukE[1Ak |G ].
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It is clear that E[Xn|G ] is G measurable and satisfies (2.4) and

‖E[Xn|G ]‖ ≤
∑
k≤n
‖uk‖E[1Ak |G ] = E[‖Xn‖|G ].

In light of the fact that
ˆ

Ω
‖E[Xn|G ]−E[Xm|G ]‖dP ≤

ˆ
Ω
‖Xn −Xm‖dP.

We see that convergence of Xn in L1(Ω;U) implies that {E[Xn|G ]} converges in L1(Ω;U) and therefore
we define

E[X|G ] = lim
n→∞

E[Xn|G ].

This implies that
ˆ

Ω
E[X|G ]dP = lim

n→∞

ˆ
Ω
E[Xn|G ]dP = lim

n→∞

ˆ
Ω
XndP =

ˆ
Ω
XdP,

and the following limits holds in L1(Ω)

‖E[X|G ]‖ = lim
n→∞

‖E[Xn|G ]‖ ≤ lim
n→∞

E[‖Xn‖|G ] = E[‖X‖|G ].

Exercise 2.3. Show the P almost sure uniqueness of the conditional expectation.

Exercise 2.4. Using the properties of the Bochner integral and the uniqueness of the conditional expectation,
show that for each ` ∈ U∗,

`(E[X|G ]) = E[`(X)|G ].

2.4 Probability measures on Banach spaces
Since a Banach space valued random variable on a probability space (Ω,F ,P) gives rise to a probability
measure on U via Law(X). It is important to study to properties of probability measures on Banach spaces.
The extra structure on U allows for a study of the space of probability measures on U and the convergence
of sequences of measures. For the remainder of this section, we will assume that U is a separable Banach
space and denote P(U) is the space of probability measures on (U ,B(U)).

Remark 2.14. In general much of what we prove here can be achieved with general topological spaces or
polish spaces (complete metrizable spaces). The assumption of separability can also be replaced by more
general conditions on the existence of a countable family of separating (potentially non-linear) functionals
on the space. This can be very useful when working in stochastic PDE that require working with a Banach
space equipped with it’s weak topology, which cannot even be metrized and potentially doesn’t have a
countable dense subset. This general framework is due to Jakubowski [Jak97] and can be used to prove
general versions of Prokhorov’s theorem and the Skorohod representation theorem, which we cover later.

To begin, we prove an analogue of Proposition 2.6, showing that random variables in separable Banach
spaces are determined by all linear “measurements” on them. For each ` ∈ U∗ and µ ∈ P(U) we denote
`∗µ the push-forward of µ under ` defined to be a probability measure on R given by

`∗µ(A) = µ(`−1(A)), A ∈ B(R).
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Proposition 2.15. Let µ, ν ∈P(U). If

`∗µ = `∗ν for all ` ∈ U∗,

then µ = ν.

Proof. Note that `∗µ = `∗ν implies that µ(Ar) = ν(Ar), for all sets Ar = {u ∈ U : `(u) ≤ r}. Note
that the sets K = {Ar}r∈R form a π-system and by Proposition 2.4, the sigma-algebra generated by K is
B(U). It then follows from Proposition 2.9 that µ = ν on B(U).

We will also find it useful to take the Fourier transform of a probability measure µ ∈ P(U) defined as
a functional µ̂ on U∗ for each ` ∈ U∗ by

µ̂(`) :=

ˆ
U
ei`(u)µ(du).

The function µ̂(`) is often called the characteristic function of µ. It is not hard to show that µ̂(`) uniquely
determines a probability measure.

Proposition 2.16. Let µ, ν ∈P(U). If µ̂(`) = ν̂(`) for all ` ∈ U∗, then µ = ν.

Proof. First note that the assumption of the theorem is equivalent to µ̂(λ`) = ν̂(λ`) for all λ ∈ R and
` ∈ U∗. By Proposition 2.11 this is equivalent to

ˆ
R
eiλx(`∗µ)(dx) =

ˆ
R
eiλx(`∗ν)(dx).

Since one dimensional Fouerier transforms of measures are uniquely determined, we deduce that `∗µ = `∗ν.
Applying Proposition 2.15 completes the proof.

2.4.1 Weak convergence

In general we are interested in convergence properties of measures (or more generally compactness prop-
erties of the space P(U)). To begin, we introduce a notion of convergence on P(U). A sequence of
probability measures {µn}n∈N ⊂ P(U) is said to converge weakly to a probability measure µ ∈ P(U) if
for every bounded continuous function ϕ ∈ Cb(U) we have

lim
n→∞

ˆ
U
ϕdµn =

ˆ
U
ϕdµ.

This convergence induces a topology on P(U) known as the narrow topology (sometime also called weak
topology), defined to be the weakest topology such that for each ϕ ∈ Cb(U) the mapping

µ 7→
ˆ
U
ϕdµ

is continuous.

Remark 2.17. The integration of ϕ ∈ Cb(U) against µ is often viewed as a linear functional on Cb(U).
Indeed it is well know that the space of all finite measures on U , M (U) is the dual of C0(U) the space of
continuous functions that vanish at∞. Consequently the pairing between a probability measure µ ∈P(U)
and a function ϕ ∈ Cb(U) is often denoted by

µ(ϕ) :=

ˆ
U
ϕdµ.
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It is important to note that integration against all functions in Cb(U) completely determines probability
measures.

Proposition 2.18. Let µ, ν ∈P(U). If
µ(ϕ) = ν(ϕ),

for all ϕ ∈ Cb(U) then µ = ν.

Proof. For any closed set F , one can find a sequence of ϕn ≥ 0 such that ϕn → 1F boundedly. Passing the
limit in the integral implies that

µ(F ) = ν(F )

for all closed sets F . Since the closed sets form a π-system, Proposition 2.9 implies that µ = ν.

An important theorem the characterizes the narrow topology is known as the portmanteau theorem

Theorem 2.19 (Portmanteau). Let {µn}n∈N ⊂P(U) and µ ∈P(U). The following are equivalent.

• {µn} → µ weakly.

• µn(ϕ)→ µ(ϕ) for all continuous bounded ϕ on U .

• µn(ϕ)→ µ(ϕ) for all Lipschitz bounded ϕ on U .

• lim supn µn(F ) ≤ µ(F ) for all closed F ⊂ U .

• lim infn µn(O) ≥ µ(O) for all open sets O ⊂ U .

• limn µn(A) = µ(A) for all Borel A with µ(∂A) = 0.

It is important to recognize that all probability measures on U defined on the Borel sigma-algebra are
actually regular measures in the sense that they can be inner approximated by compact sets.

Proposition 2.20 (Regularity). A probability measure µ ∈ P(U) is a regular measure. That is, for every
A ∈ B(U) and ε > 0, there is a compact set Kε such that

µ(A\Kε) ≤ ε.

Proof. Let ε > 0. By separability, for each n ∈ N we can cover U by a countable family of closed balls
{Bn

k }k∈N of radius 1/n. These sets can be made into a disjoint covering {B̃n
j } such that for each N ≥ 0⋃

k≤N
Bn
k =

⋃
k≤N

B̃n
k .

By countable additivity and finiteness of the measure µ, there exists an Nn > 0 such that

µ

U\ ⋃
k≤Nn

Bn
k

 =
∑
k≥Nn

µ(B̃n
k ) < ε2−n

Defining
K =

⋂
n∈N

⋃
k≤Nn

Bn
k ,
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we see that K is a compact set since it is closed and totally bounded (i.e for each δ > 0 it can be covered by
finite many balls of radius δ). Moreover, we have

µ(U\K) ≤
∑
n∈N

µ

U\ ⋃
k≤Nn

Bn
k

 < ε.

Our aim is to deduce a relative compactness criterion for subsets of P(U) in the narrow topology. We
say subset M ⊂ P(U) is relatively (sequentially) compact if for every subsequence {µn} ⊂ M , there
exists a subsequence {µnk} converging to µ ∈P(U) weakly.

Naturally, the idea is to use the fact that for each ϕ ∈ Cb(U), the real-valued sequence {
´
ϕdµn} has a

convergence subsequence. Now if Cb(U) were separable, then a standard diagonalization argument (similar
to the proof of Arzela-Ascoli) would allow us to extract a subsequence {µnk} such that limk→∞

´
ϕdµnk

exists for ϕ in a dense subset of Cb(U). This limit easily extends to define a continuous functional I(ϕ)
on Cb(U) which can be represented uniquely by a probability measure µ by the Riesz-Markov-Kakutani
representation theorem.

The problem here is that (as remarked in Example 2.3) Cb(U) is not separable and therefore the above
diagonalization procedure does not work. The key obstruction here is due to the fact that U is not compact.
Indeed if U were a compact space then Cb(U) would be separable, and the above procedure would work.

Remark 2.21. In fact the space P(U) is not compact in the narrow topology since a sequence of probability
measures can lose mass at infinity. For example if {un}n∈N is a sequence such that ‖uk‖ → ∞ (and
therefore has no convergence subsequence), then the sequence of delta measures {δuk} has no convergent
subsequence in the narrow topology, since

ˆ
U
ϕdδuk = ϕ(uk),

which does not have a convergent subsequence for all ϕ ∈ Cb(U). Recall δu is the measure defined by
δu(A) = 1A(u) for each A ∈ B(U).

To understand how to get around this obstacle, we introduce the following extension of the regularity
property introduced in Proposition 2.20 to subsets of P(U). We say family M ⊂ P(U) of probability
measures is called tight (or uniformly tight) if for each ε > 0 there exists compact set Kε ⊂ U such that

sup
µ∈M

µ(U\Kε) < ε.

Such a condition prevents the measures {µn} from sending mass off to infinity, since they must keep most of
their mass concentrated on a compact set. The following theorem is known as Prokhorov’s theorem relates
tightness of measures to relative compactness in P(U).

Theorem 2.22 (Prokhorov). A family M ⊆P(U) is tight if and only if M is relatively compact in P(U).

Proof. Let {µn} be a sequence in M . By the tightness condition, for each j ≥ 0, let Kj be a compact set
such that for all n

µn(U\Kj) ≤ 1/j,

We may assume without loss of generality that {Kj} is increasing K1 ⊂ K2 ⊂ . . . . Following the diago-
nalization argument above, for each j, we can produce a subsequence of measures that when restricted to
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Kj converge to a measure µj supported on Kj . A further diagonal argument then implies that there exists a
subsequence {µnk} and a limit measure µ such that for each ϕ ∈ Cb(U) and j ≥ 0,

lim
k→∞

ˆ
Kj

ϕdµnk =

ˆ
Kj

ϕdµ.

Using the fact that µnk(U\Kj) ≤ 1/j and by the Portmanteau theorem µ(U\Kj) < 1/j, we find,∣∣∣∣ˆ
U
ϕdµnk −

ˆ
U
ϕdµ

∣∣∣∣ ≤
∣∣∣∣∣
ˆ
Kj

ϕdµnk −
ˆ
Kj

ϕdµ

∣∣∣∣∣+

∣∣∣∣∣
ˆ
U\Kj

ϕdµnk −
ˆ
U\Kj

ϕdµ

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
Kj

ϕdµnk −
ˆ
Kj

ϕdµ

∣∣∣∣∣+ 2‖ϕ‖Cb/j.

First sending k →∞ and then sending j →∞ completes the proof.

Exercise 2.5. Show the converse statement in Theorem a relatively compact set in P(U) is tight. Hint:
follow the proof of Proposition 2.20.

Remark 2.23. The narrow topology can be metrized by a number of metrics. Indeed, P(U) inherits most
of it’s properties from U . Namely if U is separable and metrizable (Polish) then so it P(U). One of the
most commonly used metrics is the Wasserstein-1 metric (or the dual Lipschitz metric) defined by

W(µ1, µ2) = sup
‖ϕ‖Lip≤1

∣∣∣∣ˆ
U
ϕdµ1 −

ˆ
U
ϕdµ2

∣∣∣∣ ,
where ‖ϕ‖Lip = supx 6=y |ϕ(x)− ϕ(y)|/d(x, y), and d(x, y) is some distance-like metric on U . This metric
is very useful in study of ergodic theory of Markov processes. Something that we will get to later.

It is natural to ask whether, given a probability measure µ ∈ P(U), can one find a random variable X
on a probability space (Ω,F ,P) whose law coincides with µ. In general, this is related to the question of
sampling of probability measures. The following theorem, due to Skorohod, links the concept of tightness of
probability measures with that of almost sure convergence of random variables on a certain probability space.
One can think of this as a generalization of the inverse CDF approach to sampling probability distributions
on R.

Theorem 2.24 (Skorohod). Let {µn} ⊂ P(U) converge weakly to µ ∈ P(U). Then there exists a prob-
ability space (Ω,F ,P) and a sequence of random variables, {Xn} and X with Law(Xn) = µn and
Law(X) = µ such that Xn → X P-almost surely.

Proof. The proof is well-known, but rather complicated and can be found in [Bil99] pg 70. The main idea,
similar to the inverse CDF approach is the let Ω = [0, 1], F = B([0, 1]), and P = Leb and then build X
by using separbility to build covering of U that refines down to small scales centered around the points in
the separable set. This covering maps to a lexicographicall ordered covering of [0, 1] under µ and µn. The
random variables are then built to take values in the separable set associated with with each set covering
[0, 1].

Remark 2.25. If one starts with a sequence of U-valued random variables Xn on a probability space
(Ω,F ,P) and if the laws µn = Law(Xn) are tight on U , then by Skorohod, there exists a different proba-
bility space (Ω̃, F̃ , P̃) and random variables {X̃n} and X̃ with the same laws such that X̃n → X̃ , P-almost
surely.
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2.4.2 Total variation metric

There is another natural stronger topology on P(U) called the total variation topology. Recall that for any
signed Borel measure η on U admits a Hahn-Jordan decomposition η = η+ − η−, where η+ and η− are
two mutually singular non-negative Borel measures on U . The total variation norm of the measure η is then
defined by

‖η‖TV =
1

2
(η+(U) + η−(U)).

Now suppose that µ, ν ∈ P(U), the total variation norm gives a natural metric ‖µ − ν‖TV between µ and
ν. Note that since µ and ν have the same mass, we have

‖µ− ν‖TV = (µ− ν)+(U) = (µ− ν)−(U).

Remark 2.26. The factor of 1/2 in the definition of the TV norm is customary when defining the total
variation distance between two probability measures and is to ensure that the total variation distance always
satisfies

‖µ− ν‖TV ≤ 1.

This convention is not always taken in the literature as it differs from the usual definition of the total variation
of signed measure.

Given two measures µ, ν ∈P(U), it is known that if λ ∈P(U) is such that µ and λ are both absolutely
continuous with respect to λ (we can always take λ = 1

2(µ+ ν)), then the following formula holds

d(µ− ν)±

dλ
=

(
dµ

dλ
− dν

dλ

)±
. (2.5)

Exercise 2.6. Prove that equation (2.5) holds.

Along these lines, it is convenient to define the non-negative overlap measure µ ∧ ν by

d(µ ∧ ν)

dλ
= min

{
dµ

dλ
,

dν

dλ

}
.

So that we have the decompositions

µ = (µ− ν)+ + µ ∧ ν = (ν − µ)− + µ ∧ ν

and
ν = (ν − µ)+ + µ ∧ ν = (µ− ν)− + µ ∧ ν.

Note that since µ and ν are probability measures, this “overlap” measure µ ∧ ν always has mass ≤ 1. It
follows that we have the following alternate formula for the total variation norm

‖µ− ν‖TV = 1− (µ ∧ ν)(U). (2.6)

The formula (2.6) is useful because it shows how the distance between two probability measures relates
to how much they “overlap”. In particular it gives the following useful characterization.

Lemma 2.27. Let µ, ν ∈ P(U). Then µ = ν if and only if ‖µ − ν‖TV = 0. Additionally µ and ν are
mutually singular if and only if ‖µ− ν‖TV = 1.
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Proof. Clearly if µ = ν then ‖µ−ν‖TV = 0. Next suppose that ‖µ−ν‖TV = 0. It follows that (µ−ν)+ = 0
and therefore µ = µ ∧ ν = ν.

Next suppose that µ and ν are mutually singular. Then by the uniqueness of the Hahn-Jordan decom-
position (µ − ν)+ = µ and therefore ‖µ − ν‖TV = µ(U) = 1. Next suppose that ‖µ − ν‖TV = 1, then
µ ∧ ν = 0 and therefore

µ = (µ− ν)+ and ν = (µ− ν)−,

which are mutually singular by the properties of the Hahn-Jordan decomposition theorem.

There are several useful equivalent ways to define the total variation metric

Lemma 2.28. Let µ, ν ∈ P(U). Then the following are all equivalent definitions of the total variation
distance,

‖µ− ν‖TV = (µ− ν)+(U) = (µ− ν)−(U) = 1− (µ ∧ ν)(U) (2.7)

=
1

2

∥∥∥∥dµ

dλ
− dν

dλ

∥∥∥∥
L1(λ)

(2.8)

=
1

2
sup
‖ϕ‖∞≤1

|µ(ϕ)− ν(ϕ)| (2.9)

= sup
A∈B(U)

|µ(A)− ν(A)|, (2.10)

where λ ∈ P(U) is such that µ and ν are absolutely continuous with respect to λ and the supremum in
(2.9) is over all bounded measurable functions with ‖ϕ‖∞ ≤ 1.

Proof. Of course we have already shown (2.7). Equation (2.8) follows easily from the fact that∣∣∣∣dµdλ
− dν

dλ

∣∣∣∣ =
d(µ− ν)+

dλ
+

d(µ− ν)−

dλ
.

For (2.9) note that for any bounded measurable function ϕ with ‖ϕ‖∞ ≤ 1 we have

|µ(ϕ)− ν(ϕ)| ≤ |(µ− ν)+(ϕ)|+ |(µ− ν)−(ϕ)|
≤ (µ− ν)+(U) + (µ− ν)−(U)

≤ 2‖µ− ν‖TV ,

with equality for ϕ = 1U+ − 1U− , with U+,U− ⊂ U be the Hahn decomposition of U relative to µ− ν.
The proof of (2.10) is left as an exercise.

Exercise 2.7. Prove (2.10). (Note that there is no factor of 1/2)

Exercise 2.8. Let ` ∈ U∗ and µ, ν ∈P(U). Prove that

‖`∗µ− `∗ν‖TV ≤ ‖µ− ν‖TV .
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3 Gaussian measures
3.1 Preliminaries
Our first step towards dealing with stochastic equations in infinite dimensions is to study Gaussian measures
on Banach spaces. This foundation will give us to tools to study an analyze Wiener processes in infinite
dimensions, which are crucial for defining stochastic differential equations in infinite dimensions. Much
of what we will construct can also be done on locally convex topological vector spaces, but this can get
technical and simply complicates the presentation (and is also not needed for our purposes). A more general
discussion of Gaussian measures in this general setting can be found in the book by Bogachev [Bog98].

We now turn to the construction and study of Gaussian measures on a separable Banach space U with
respect to B(U). Naturally in light of Proposition 2.15 we can define such a measure uniquely in terms of
it’s projection under linear functionals. Recall, a Gaussian measure on R is a measure µ ∈ P(R) of the
form

µ(dx) =
1√

2πσ2
exp

(
−(x−m)2

2σ2

)
dx.

The quantities m and σ2 are referred to as the mean and variance respectively. When σ2 = 0, the measure
is concentrated at m and is given by γ = δm. We recall some useful properties of Gaussian measures on R

1. The mean and variance are given by

m =

ˆ
R
xµ(dx), σ2 =

ˆ
R

(x−m)2µ(dx).

2. The characteristic function is

µ̂(λ) :=

ˆ
R
eiλxµ(dx) = exp

(
imλ− 1

2
λ2σ2

)
.

3. The moment generating function is

Mµ(λ) :=

ˆ
R
eλxµ(dx) = exp

(
λm+

1

2
σ2λ2

)
.

4. Exponential moments are given by

ˆ
R
eλx

2
µ(dx) =

{
1√

1−2λσ2
λ < 1

2σ2

+∞ λ ≥ 1
2σ2

.

Definition 3.1. We say a measure µ ∈ P(U) is a Gaussian measure if for each ` ∈ U , the measure
`∗µ ∈P(R) is a Gaussian measure. We say that a Gaussian measure µ is centered (or mean zero) if `∗µ is
a centered Gaussian measure.

For a Gaussian measure µ on U it is natural to define the mean mµ : U → R and covariance Cµ :
U∗ × U∗ → R as linear maps

mµ(`) :=

ˆ
U
`(u)µ(du)

and
Cµ(`1, `2) :=

ˆ
U

(`1(u)−mµ(`1))(`2(u)−mµ(`2))µ(du).
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Note that both of these quantities mµ and Cµ are well-defined by estimates on the Gaussian `∗µ, since by
Proposition 2.11 we have

mµ(`) =

ˆ
R
x (`∗µ)(dx) <∞,

and

Cµ(`, `) =

(ˆ
R

(x−mµ(`))2 (`∗µ)(dx)

)
<∞,

which is sufficient by Cauchy-Schwartz Cµ(`1, `2) ≤ Cµ(`1, `1)1/2Cµ(`2, `2)1/2.

Exercise 3.1. Show that a measure µ ∈P(U) is Gaussian if and only if the characteristic function µ̂(`) is
given by

µ̂(`) = exp

(
imµ(`)− 1

2
Cµ(`, `)

)
,

for some linear function mµ on U∗ and Cµ a symmetric bilinear function on U∗ such that ` 7→ Cµ(`, `) is
non-negative.

Example 3.2. Let U = Rn and let m ∈ Rn and Q be a symmetric non-negative definite matrix on Rn. Let
µ be the Gaussian measure on Rn with characteristic function

µ̂(λ) = exp

(
i〈λ,m〉 − 1

2
〈Qλ, λ〉

)
Taking derivatives of the characteristic function it is easy to deduce that for all i, j = 1, . . . n

ˆ
Rn
xiµ(dx) = mi,

ˆ
Rn

(xi −mi)(xj −mj)µ(dx) = Qij .

Notice that since Q is only positive semi-definite, the measure µ may by singular on some subspaces and
therefore does not have a well-defined density. However if Q is indeed invertible, then µ has a density

1√
(2π)n detQ

exp

(
−1

2
〈Q−1(x−m), (x−m)〉

)
.

The quantities mµ and Cµ are also continuous on U∗, which can be seen using a version of the Pettis
integral, however this is more machinery than we actually need. The following Lemma is sufficient:

Lemma 3.3. Suppose that µ ∈P(U) such that there is some k ∈ N, k ≥ 1 such that for all ` ∈ U∗
ˆ
U
|`(u)|kµ(du) <∞,

for some ε > 0, then for `1, . . . `k ∈ U∗ we have∣∣∣∣ˆ
U
`1(u) . . . `k(u)µ(du)

∣∣∣∣ ≤ Ck‖`1‖∗ . . . ‖`k‖∗.
Proof. We only show it for the k = 1 case. The general k ∈ N is similar. We define a linear operator
T : U∗ → L1(µ) by

(T`)(u) = `(u).

The goal is to show that T is bounded. Indeed, in light of the closed graph theorem and the linearity of T ,
we only need to show that T is closed. This is left as an exercise.

20

https://en.wikipedia.org/wiki/Pettis_integral
https://en.wikipedia.org/wiki/Pettis_integral


Exercise 3.2. Show that T defined in the proof above is a closed operator. Namely, if `n → ` in U∗, and
`n(u)→ ¯̀(u) in L1(µ) then T` = ¯̀.

Exercise 3.3. Extend the proof of Lemma 3.3 to general k ∈ N, k ≥ 1. (Hint: show that there exists a Ck
such that (ˆ

U
|`(u)|kdµ

)1/k

≤ Ck‖`‖∗,

and use Hölder’s inequality.)

We now have an immediate corollary of Lemma 3.3.

Corollary 3.4. mµ and Cµ are continuous on U∗. Namely, there exist constants ‖mµ‖ and ‖Cµ‖, which are
the smallest constants such that

|mµ(`)| ≤ ‖mµ‖‖`‖∗ |Cµ(`1, `2)| ≤ ‖Cµ‖‖`1‖∗‖`2‖∗.

Exercise 3.4. Give an alternative proof of Corollary 3.4 using the characteristic function µ̂(`), Exercise 3.1,
and Lebesgue’s dominated convergence theorem. Use this to deduce that ` 7→ mµ(`) and ` 7→ Cµ(`, `) are
continuous in the weak-* topology on U∗.

Remark 3.5. This continuity given in Corollary 3.4 allows us to identify mµ as an element of U∗∗ as well
as to define the operator Ĉµ : U∗ → U∗∗ by the relation

(Ĉµ`1)(`2) = Cµ(`1, `2).

Remark 3.6. It is natural to attempt to define the mean m̂µ ∈ U and covariance Ĉµ : U∗ → U to be the
Bochner integrals

mµ =

ˆ
U
uµ(du), Ĉµ` =

ˆ
U
u `(u)µ(du)

so that mµ(`) = `(m̂µ) and Cµ(`1, `2) = `2(Ĉµ`1), and in general this is correct. However, there is an
obstacle to these definitions, namely we don’t know a priori that ‖u‖ and ‖u‖2 are integrable with respect
to µ and therefore Bochner integrability eludes us.

These integrability issues can be resolved by the following theorem due to Fernique that gives exponen-
tial moments for Gaussian meaures.

Theorem 3.7 (Fernique [Fer71]). Let µ ∈ P(U) be a centered Gaussian measure with covariance Cµ.
Then for λ < 1/(2‖Cµ‖) we have

ˆ
U

exp
(
λ‖u‖2

)
µ(du) <∞.

Remark 3.8. This incredible result is very powerful and in fact applies to a much more general class of
measures that have a rotation invariance for their product measure. The proof is rather complicated (see
Hairer’s notes for more details).

An immediate corollary of this result is a better classification of the covariance Ĉµ.

Corollary 3.9. Let µ ∈P(U) be a centered Gaussian, then Ĉµ is a bounded linear operator from U∗ to U
with norm ‖Cµ‖.
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Proof. This follows by recognizing that one has the identity

Ĉµ` =

ˆ
U
u `(u)µ(du),

which is a well defined Bochner integral by the fact that ‖u`(u)‖ ≤ ‖u‖2‖`‖∗ is integrable. Moreover we
have

‖Ĉµ`‖ = sup
‖`1‖∗=1

|`1(Ĉµ`)| = sup
‖`1‖∗=1

|Cµ(`1, `)| ≤ ‖Cµ‖‖`‖∗

Remark 3.10. The proof that mµ belongs to U is more subtle, since we have only defined exponential mo-
ments for centered Gaussian measures and a priori it is not clear that every non-centered Gaussian measure
can be shifted . However, it is true and can be found in Bogachev [Bog98].

3.2 The Cameron-Martin space
For a given centered Gaussian measure µ it is useful to observe that the covariance structure of µ gives a
natural embedding of U∗ into L2(µ) since

‖`‖2L2(µ) = Cµ(`, `) <∞.

Denote the corresponding closure Rµ of U∗ in L2(µ). The space Rµ is a Hilbert space with the natural L2

inner product and is therefore separable since L2(µ) is. Elements in Rµ can be seen as linear functionals
away from some measure-zero linear subspace.

Proposition 3.11. For every ` ∈ Rµ, there exists a Borel linear subspace V` ⊆ U of full measure µ(V`) = 1
such that `|V` is a linear map.

Proof. By definition ` ∈ Rµ is theL2(µ) limit of elements in U∗ and therefore since sequences that converge
in L2 have µ almost sure convergence subsequences, we can find a sequence {`n} ⊆ U∗ such that `n → `
µ-almost surely. Note that we can always take the full measure set of convergence V` to be linear because `n
are linear and therefore if `n on a set of points, it also converges on all linear combinations of those points,
therefore `|V` is linear being the pointwise limit of linear maps.

Exercise 3.5. Show that the operator Ĉµ : U∗ → U can be uniquely extended to a continuous linear operator
fromRµ to U and that for each ` ∈ Rµ, the following formula still holds as a Bochner integral

Ĉµ` =

ˆ
U
u `(u)µ(du).

(Hint: show that sequences in U∗ which are Cauchy in L2(µ) are Cauchy in U under Ĉµ)

Exercise 3.6. Show that the extension Ĉµ : Rµ → U is compact , injective and has dense range.

Since we can extend Ĉµ : U∗ → U uniquely to a continuous linear mapping from Rµ to U , the image
of Rµ under this map, Hµ := Ĉµ(Rµ) ⊆ U naturally defines another Hilbert space called the Cameron
Martin space with inner product 〈·, ·〉µ, inherited from L2(µ) by

〈Ĉµ`1, Ĉµ`2〉µ := 〈`1, `2〉L2(µ).

Moreover by Exercise Hµ is a densely and compactly embedded into U (meaning bounded subsets of Hµ
are pre-compact in U). It is important to note that using properties of the Bochner integral (3.5) we still have
the following formula for each ` ∈ U∗ and `′ ∈ Rµ

`(Ĉµ`
′) = 〈`, `′〉L2(µ).
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Remark 3.12 (Reproducing Kernel Hilbert Space). The term reproducing kernel Hilbert space is commonly
used in the theory of Gaussian measures to talk about the spaces Rµ and Hµ, and there is considerable
confusion about the terminology’s use (or misuse) in the literature. For instance, Bogachev [Bog98] (which
we are partially following) defines Rµ to be the reproducing kernel Hilbert space associated with µ, while
DaPrato/Zabczyck call the Cameron Martin spaceHµ the reproducing kernel Hilbert space associated to µ

Traditionally, a reproducing kernel Hilbert space is a Hilbert space of functions on a set where pointwise
evaluation (the delta functional) is a continuous functional and can therefore be represented by a square
integrable kernel. Hence the integration of the kernel against a function “reproduces” it pointwise. A simple
example of such a space is the Sobolev space H1

0 ([0, 1]) with the kernel C(s, t) = min{s, t} − st.
In general neitherRµ norHµ is a reproducing kernel Hilbert space in the traditional sense, since point-

wise evaluations of functions ` ∈ Rµ are not necessarily continuous at all points and Hµ is not even a set
of functions.However, the connection can be made more apparent if U is a space of continuous functions
(which it is in most cases of interest), for instance U = C([0, 1],R). In this case delta functions {δs}s∈[0,1]

belong to U∗ and one can show that the Cameron-Martin space Hµ is a reproducing kernel Hilbert space in
the traditional sense with reproducing kernel C(s, t) = Cµ(δs, δt).

The following equivalent definitions of ‖ · ‖µ and Cµ(`, `) are useful.

Lemma 3.13. For each h ∈ Hµ

‖h‖µ = sup {|`(h)| : ` ∈ U∗, Cµ(`, `) ≤ 1} ,

and for each and ` ∈ U∗

Cµ(`, `) = sup
{
|`(h)|2 : h ∈ Hµ, ‖h‖µ ≤ 1

}
. (3.1)

Proof. Let h ∈ Hµ. By the definition ofHµ there exists a unique `h ∈ Rµ such that h = Ĉµ`h and therefore
using the fact thatRµ is a Hilbert space and U∗ is dense inRµ we have

‖h‖µ = ‖`h‖L2(µ) = sup
{
|〈`, `h〉L2(µ)| : ` ∈ Rµ, ‖`‖L2(µ) ≤ 1

}
= sup

{
|`(Ĉµ`h)| : ` ∈ U∗, Cµ(`, `) ≤ 1

}
= sup {|`(h)| : ` ∈ U∗, Cµ(`, `) ≤ 1} .

Additionally let ` ∈ U∗ the again by the Hilbert space structure ofRµ

Cµ(`, `) = ‖`‖2L2(µ) = sup
{
〈`, `′〉2L2(µ) : `′ ∈ Rµ, ‖`′‖L2(µ) ≤ 1

}
= sup

{
|`(Ĉµ(`′))|2 : `′ ∈ Rµ, ‖Ĉµ`′‖µ ≤ 1

}
= sup

{
|`(u)|2 : u ∈ Hµ, ‖u‖µ ≤ 1

}
.

Remark 3.14. It is interesting to see that (3.1) implies that for a given ` ∈ U∗, the variance Cµ(`, `) can be
determined simply by calculating the norm of ` onHµ.

As it turns out, given a Banach space U , a Gaussian measure is uniquely determined by it’s Cameron
Martin spaceHµ.

Proposition 3.15. Let µ and ν be two centered Gaussian meaures on U and suppose that Hµ = Hν and
‖h‖µ = ‖h‖ν for all h ∈ Hµ, then µ = ν.
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Proof. By Lemma 3.13 we immediately find that for each ` ∈ U∗

Cµ(`, `) = Cν(`, `),

which implies that µ̂(`) = ν̂(`).

Remark 3.16. The fact that a Gaussian measure on a Banach space can be completely determined by it’s
Cameron-Martin space is very powerful and allows one to specify a Gaussian measure µ on U simply by
specifying a Hilbert space (Hµ, ‖ · ‖µ) that embeds into U in a certain way.

This embedding J : Hµ → U along with (Hµ, ‖ · ‖µ) is referred to as an abstract Wiener space and the
measure µ the canonical measure on U . The theory of abstract Wiener spaces was introduced by Leonard
Gross [Gro67] to general the construction of the Wiener measure given by Norbert Wiener.

In light of the defining properties of the Cameron-Martin space, a rather startling fact is that that in
infinite dimensionsHµ is actually µ measure zero.

Proposition 3.17. If dim(U) =∞ then µ(Hµ) = 0.

Proof. If dim(U) =∞, let {ˆ̀k}k∈N be an orthonormal basis forRµ and note that if h ∈ Hµ, then∑
k∈N
|ˆ̀k(h)|2 =

∑
k∈N
〈ˆ̀k, `h〉 = ‖`h‖2L2(µ) = ‖h‖2µ <∞.

Since {ˆ̀k}k∈N form a family of iid standard Gaussian random variables on the probability space (U ,B(U), µ),
by the strong law of large numbers

lim
n→∞

1

n

∑
k∈N
|ˆ̀k|2 = 1 µ-almost surely

In particular this implies that ∑
k∈N
|ˆ̀k|2 =∞ µ-almost surely,

which implies that µ(Hµ) = 0.

As it turns out, in infinite dimensions, it is extremely easy for measures to be mutually singular. Indeed,
even simple translations and dilations of Gaussian measures can be mutually singular with respect to each
other (in contrast to the finite dimensional case). This is illustrated in the following result.

Proposition 3.18. Let µ be a centered Gaussian measure on U with dim(U) = ∞. For each c ∈ R define
Dcu = cu to be the dilation of u ∈ U by c. Then if c 6= ±1, (Dc)∗µ and µ are mutually singular.

Proof. To prove this, let {ˆ̀k}k∈N be a an orthonormal basis for Rµ. Again, by the strong law of large
numbers

lim
n→∞

1

n

n∑
k=0

|ˆ̀k|2 → 1 µ almost surely.

On the other hand under the measure (Dc)∗µ the set {ˆ̀k} are still iid Gaussian random variables, however
by linearity of ˆ̀

k they have variance ‖ˆ̀k‖2L2(D∗cµ) = c2. Therefore the strong law of large numbers also
gives

lim
n→∞

1

n

n∑
k=0

|ˆ̀k|2 → c2 (Dc)∗µ almost surely.

This implies that if c 6= ±1 then the measures µ and (Dc)∗µ are mutually singular since the set on which
(3.2) holds must be zero measure for (Dc)∗µ and vice-versa.
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For shifts of centered Gaussian measures, we have the following complete characterization in terms of
the Cameron-Martin space.

Theorem 3.19 (Cameron-Martin). Let µ be a centered Gaussian measure on U . For each h ∈ U define
Thu = u+ h to be the shift of u ∈ U by h. Then µh := (Th)∗µ is absolutely continuous with respect to µ if
and only if h ∈ Hµ with Radon-Nikodym derivative

dµh
dµ

(u) = exp

(
`h(u)− 1

2
‖h‖2µ

)
, (3.2)

where `h is the unique element of Rµ such that h = Ĉµ`h.

Proof. Suppose that h ∈ Hµ, then by studying the characteristic function, we easily find

µ̂h(`) = ei`(h)µ̂(`) = exp

(
i`(h)− 1

2
Cµ(`, `)

)
.

Using the fact that `(h) = Cµ(`, `h) = Cµ(`h, `) and Cµ(`h, `h) = ‖h‖2µ, we easily find

i`(h)− 1

2
Cµ(`, `) =

1

2
Cµ(`− i`h, `− i`h)− 1

2
‖h‖2µ.

Therefore

µ̂h(`) = exp

(
Cµ(`− i`h, `− i`h)− 1

2
‖h‖2µ

)
= µ̂(`− i`h) exp

(
−1

2
‖h‖2µ

)
=

ˆ
U
ei`(u) exp

(
`h(u)− 1

2
‖h‖2µ

)
µ(du).

which implies absolute continuity of µh with respect to µ with the Radon-Nikodym derivative (3.2).
To show the converse. Suppose that h /∈ Hµ. Then by Lemma 3.13 there exists a sequence of `k ∈ U∗

with Cµ(`k, `k) = 1 such that |`k(u)| → ∞ as k →∞. It follows that

‖µh − µ‖TV ≥ ‖(`k)∗µh − (`k)∗µ‖TV = 1− ((`k)∗µh ∧ (`k)∗µ)(R).

Using the fact that

((`k)∗µh ∧ (`k)∗µ)(R) =
1√
2π

ˆ
R

min

{
e−

x2

2 , e−
(x−`k(h))

2

2

}
dx

=
2√
2π

ˆ
x>|`k(h)|/2

e−
x2

2 dx

Therefore ((`k)∗µh∧(`k)∗µ)(R)→ 0 as k →∞. Passing the limit as k →∞ on both sides of (3.2) implies
that ‖µh − µ‖TV = 1 and therefore µh and µ are mutually singular.

A natural consequence of Theorem 3.19 is that shifts in Cameron-Martin directions preserve full-
measure and zero-measure sets. This gives the following characterization of the Cameron-Martin space.

Proposition 3.20. Let µ be a centered Gaussian measure on U . Then Hµ is the intersection of all linear
subspaces of full measure.
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Proof. As mentioned already, if L is a full measure subspace of U , then by Theorem 3.19 L+ h is also full
measure for each h ∈ Hµ and therefore h ∈ L.

Alternatively, suppose that h /∈ Hµ and let {`k} ⊆ U be such that |`k(h)| > k and Cµ(`k, `k) = 1.
Since

E
∑
k∈N

1

k2
|`k(u)|2 =

∑
k∈N

1

k2
<∞.

If follows that the linear space

L =

{
u ∈ U :

∑
k∈N

1

k2
|`k(u)|2 <∞

}

has full measure and since by construction
∑

k∈N
1
k2
|`k(h)|2 >∞ we have h /∈ L.

3.3 Hilbert space case
In the case when U = H is a separable Hilbert space (and it’s dual is identified withH by Riesz representa-
tion), the behavior of the mean mµ(u) and the covariance Cµ(u, u) can be shown to be much nicer and the
Cameron Martin-space identifies more explicitly. Indeed, Corollary 3.4 implies by Riesz representation that
there exists a vector m ∈ H and bounded symmetric positive semi-definite operator Q : H → H such that

mµ(u) = 〈m,u〉, Cµ(u, u) = 〈Qu, u〉.

In this case we will refer to m and Q as the mean and covariance of µ respectively.
In fact on Hilbert spaces, Gaussian measures can be completely classified in terms of the space of trace-

class (or nuclear) symmetric positive semi-definite operators.

Definition 3.21. A trace-class (or nuclear) operator T onH is such that for each orthonormal basis {ek}k∈N
inH, we have

‖T‖1 :=
∑
k∈N
|〈Tek, ek〉| <∞.

This norm is independent of the choice of orthonormal basis and denotes a Banach space of trace-class
operators, denoted by L1(H). In particular the trace operator

TrT :=
∑
k∈N
〈Tek, ek〉

is a well defined continuous linear functional on L1(H). The space of trace-class symmetric positive semi-
definite operators is denoted by L+

1 (H).

The following proposition is classical and will allow us to completely characterize Gaussian measures
on a Hilbert space.

Proposition 3.22 (Hilbert-Schmidt). Let Q ∈ L1(H)+, then there exists an orthonormal basis {ek}k∈N of
H and {qk}k∈N, qk ≥ 0 such that for each k ∈ N

Qek = qkek.

Theorem 3.23 (Characterization of Gaussian measures). A probability measure µ on a separable Hilbert
spaceH is Gaussian if and only if there exists a m ∈ H and Q ∈ L+

1 (H) such that

µ̂(u) = exp

(
i〈m,u〉 − 1

2
〈Qu, u〉

)
.

Moreover, for every m ∈ H and Q ∈ L+
1 (H) there exists a Gaussian measure with mean m and covariance

Q.
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Proof. For the first part of the proposition, by exercise 3.1, we simply need to show that Q is trace-class. To
see this, we note that since m ∈ H we may assume that µ is mean zero since we can always shift by m. It
follows that for any orthonormal basis {ek}k∈N

TrQ =
∑
k∈N
〈Qen, en〉 =

∑
k∈N

ˆ
H
〈u, ek〉2µ(du) =

ˆ
H
‖u‖2µ(du) <∞,

by Fernique’s Theorem 3.7.
To prove that there exists a Gaussian measure with mean m and covariance Q, we let {ek}k∈N by the

eigenfunctions of Q with eigenvalues {qk}k∈N satisfying Qek = qkek (such a spectral decomposition fol-
lows from the Hilbert-Schmidt theorem). Then we let {ξk}k∈N be a sequence of iid real standard Gaussians
(mean zero and unit variance) on some probability space (Ω,F ,P) (such a family exists by Kolmogorov
extension) and define the random variable ξ ∈ H

ξ(ω) = m+
∑
k∈N

√
qkξk(ω)ek. (3.3)

Note that this series converges almost surely inH, since∑
k∈N

qkE|ξk|2 = TrQ <∞

and therefore converges by the Kolmogorov series test. Obviously ξ is measurable since it is the limit of
measurable functions. We then define µ = Law(ξ). Using independence of ξk, the characteristic function
of µ has the form

µ̂(u) = E exp (i〈u, ξ〉) = exp (i〈u,m〉)
∏
k∈N

E exp (
√
qk〈u, ek〉ξk)

= exp

(
i〈u,m〉 − 1

2

∑
k∈N

qk〈u, ek〉2
)

= exp

(
i〈u,m〉 − 1

2
〈Qu, u〉

)
,

so that µ is a Gaussian with mean m and covariance Q.

Remark 3.24. This can actually be proved without Fernique’s theorem using the characteristic function and
more crude estimates on Gaussian tails.

Exercise 3.7. Suppose that U = H is a separable Hilbert space show and µ is centered Gaussian measure
with covariance Q and let {ek}k∈N and {qk}k∈N be the eigen functions and associated eigen values. Show
thatHµ = Q1/2(H) and that the set {√qkek} form an orthonormal basis forHµ and that Q−1/2 : Hµ → H
forms Hilbert-Schmidt embedding ofHµ intoH. In addition, show that

〈h1, h2〉µ = 〈Q−1/2h1, Q
−1/2h2〉 = 〈Q−1h1, h2〉 =

∑
k

〈h1, ek〉〈h2, ek〉q−1
k ,

where the last sum is over all k such that qk > 0. (Hint: Show thatRµ can be identified withQ−1/2(H\Ker(Q))).

As a consequence of this theorem, we see that there is no such thing a “standard” Gaussian on an infinite
dimensional Hilbert space.
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Corollary 3.25. Suppose that dim(H) = ∞ then there is no Gaussian measure on H with covariance
Q = Id.

Additionally, we can obtain a more quantitative version of Fernique’s theorem.

Proposition 3.26. Let µ be a centered Gaussian measure with covariance Q ∈ L+
1 (H). Then for λ ≤

1/(2 TrQ), we have
ˆ
H

exp
(
λ‖u‖2

)
µ(du) = exp

(
−1

2
Tr log(1− 2λQ)

)
≤ 1√

1− 2λTrQ

Proof. Let ξ by the random variable defined by (3.3) then since λqk ≤ 1/2

ˆ
H

exp
(
λ‖u‖2

)
µ(du) =

∏
k∈N

E exp(λqk‖ξk‖2) =
∏
k

1√
1− 2λqk

= exp

(
−1

2

∑
k

log(1− 2λqk)

)
.

The final inequality follows from the fact that

∑
k∈N

log(1− 2λqk) ≥ log

(
1− 2λ

∑
k∈N

qk

)
,

which can be proved by induction.

Finally we can obtain a more powerful version of the Cameron-Martin theorem.

Theorem 3.27 (Feldman-Hajek theorem). Let µ1 and µ2 be two Gaussian measures with mean and covari-
ance (m1, Q1) and (m2, Q2) respectively. The measures are equivalent (mutually absolutely continuous) if
and only if

1. Q1/2
1 (H) = Q

1/2
2 (H) = H0

2. m1 −m2 ∈ H0

3. The operator (Q
−1/2
1 Q

1/2
2 )(Q

1/2
1 Q

1/2
2 )∗ − I is a Hilbert-Schmidt operator onH0.

Otherwise they are mutually singular.

The proof can be found in [DPZ14] Theorem 2.25.

3.4 Spaces of continuous functions: Gaussian processes and regularity
3.4.1 Real valued functions

Another common case is when U = C([0, 1]) is the space of real valued continuous functions on [0, 1].
Namely continuous functions ϕ : [0, 1]→ R with norm

‖ϕ‖ = sup
t∈[0,1]

|ϕ(t)|.

In this case we know that the dual space is U∗ = M([0, 1]) , the set of all finite variation signed Borel
measures on [0, 1] (see [Yos95], p119). Moreover, let D ⊆ M([0, 1]) be the subspace of all finite linear
combinations of delta measures ν =

∑
k akδtk , then D is a dense set in the weak-* topology.
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Lemma 3.28. D is dense inM([0, 1]) in the weak-* topology.

Proof. Let ϕ ∈ C[0, 1], and let P = {0 = t0 < . . . tn = 1} be a partition of [0, 1] and |P | be the size of the
partition. Let

ϕP (t) =

n∑
j=1

ϕ(tj)1(tj−1,tj ](t)

be a step function approximation of ϕ. Since ϕ is uniform continuous, we know that ϕP → ϕ in C([0, 1])
as |P | → 0 and therefore lim|P |→0 ν(ϕP ) = ν(ϕ), which is equivalent to

lim
|P |→0

n∑
j=1

ν((tj−1, tj ])δtj = ν weakly-*.

As a consequence, we see that a Gaussian random variable in C([0, 1]) is determined by finite linear
combinations of point evaluations.

Corollary 3.29. A probability measure µ on C([0, 1]) is Gaussian if and only if `∗µ is Gaussian for each
` ∈ D. Equivalently a random variable X ∈ C([0, 1]) is Gaussian if and only if for each t1, t2, . . . tn ∈
[0, 1], (Xt1 , Xt2 , . . . Xtn) is a Gaussian random vector in Rn.

Proof. Let ` ∈ U∗ and {`k}k∈N be a sequence converging to ` in the weak-* topology, then for each u ∈ U ,
`k(u)→ `(u). Since {`k} is a sequence of Gaussian random variables converging pointwise, the limit must
be Gaussian.

In light of Corollary 3.29 the mean mµ and covariance Cµ can naturally be described in terms of a mean
and covariance function m : [0, 1]→ R and C : [0, 1]× [0, 1]→ R defined by

m(t) := mµ(δs), C(s, t) := Cµ(δs, δt). (3.4)

Exercise 3.8. Show that the covariance function C(s, t) defined by (3.4) is symmetric and continuous in
each variable and positive definite in the sense that for each {tj}nj=1 ⊂ [0, 1] and {aj}nj=1 ⊂ R,

n∑
i,j=1

aiajC(ti, tj) ≥ 0. (3.5)

Moreover it completely determines Cµ by the formula,

Cµ(ν1, ν2) =

ˆ 1

0

ˆ 1

0
C(t, s)ν1(ds)ν2(dt),

for ν1, ν2 ∈M([0, 1])

As it turns out the covariance functions C(s, t) plays the role of a reproducing kernel for the Cameron-
Martin spaceHµ ⊂ C([0, 1]).

Lemma 3.30 (Reproducing kernel property). Let h ∈ Hµ, then C(t, ·) ∈ Hµ and satisfies

〈C(t, ·), h〉µ = h(t).
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Proof. Note that for each ν ∈M([0, 1]) = U∗ we have

(Ĉµν)(s) = Cµ(δt, ν) =

ˆ 1

0
a(t, s)ν(dt).

There choosing ν = δt we have Ĉµδt = a(t, ·). This implies that

〈C(t, ·), h〉µ = 〈Ĉµδt, h〉µ = δt(h) = h(t)

The following are well-known examples of Gaussian measures on C([0, 1]). And will be constructed in
generality in the next section.

Example 3.31 (Wiener process). An example of a Gaussian measure on C([0, 1]) it the one associated to
the Wiener process W (t) on [0, 1] called the Wiener measure defined to have m(t) = 0 and C(s, t) =
EW (t)W (s) = min{s, t}.

Example 3.32 (Brownian bridge). The Brownian bridge B(t) is a Gaussian process with m(t) = 0 and
C(s, t) = EB(s)B(t) = min{s, t} − st

Example 3.33 (Ornstein-Uhlenbeck process). The Ornstein-Uhlenbeck process O(t), which has m(t) = 0
and C(s, t) = EO(t)O(s) = e−|t−s|/2. Such a process with covariance that depends only on |t − s|
is known as a stationary process. Moreover it can be shows that the Ornstein Uhlenbeck-process can be
obtained related to the Wiener process by

O(t) = e−t/2W (et).

Exercise 3.9. Show that the Cameron-Martin space Hµ associated with the Wiener measure µ defined by
m(t) = 0, C(s, t) = min{s, t}. Coincides with the Sobolev space H1

0 ([0, 1]) of absolutely continuous
functions h ∈ C([0, 1]) that can be represented as

h(t) =

ˆ t

0
f(s)ds

for some f ∈ L2([0, 1]) with inner product

〈h1, h2〉µ =

ˆ 1

0
h′1(s)h′2(s)ds =

ˆ 1

0
f1(s)f2(s)ds.

3.4.2 Kolmogorov extension and continuity criterion

It is important to understand whether a given mean m(t) and a symmetric positive definite covariance func-
tion C(s, t) can be realized as the mean and covariance of a certain Gaussian measure on C([0, 1]). It is
easy to see that for each finite collection of times T = {ti}ni=1 ⊂ [0, 1] there is a Gaussian measure µT on
Rn with mean (mT )i = m(ti) and covariance (QT )ij = C(ti, tj). Moreover, it is easy to check that the
measures

{µT : T ⊂ [0, 1] finite collection}

form a consistent set of measures and therefore by the Kolmogorov extension theorem, there exists a
probability measure P on the measurable space Ω = R[0,1], endowed with the product sigma algebra
F = B(R)⊗[0,1], such that

ˆ
R[0,1]

ω(t)P(dω) = m(t) and
ˆ
R[0,1]

(ω(t)−m(s))(ω(s)−m(s))P(dω) = C(s, t).
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When Ω = R[0,1] is equipped with the measure P, we can associate to point ω a Gaussian stochastic process
X = {X(t) : t ∈ [0, 1]} with values in R (known as the canonical process), defined by

X(t, ω) = ω(t). (3.6)

Remark 3.34. It is extremely important to recognize that the measure P is constructed by the axiom of
choice, and is only defined on the product sigma-algebra B(R)⊗[0,1] defined to be the smallest sigma-
algebra containing product sets×t∈[0,1]At for At ∈ B([0, 1]). Such a sigma-algebra is extremely weak and
is much coarser than the Borel sigma-algebra associated with the product sigma-algebra.

We can extend the idea of a stochastic process X = {X(t) : t ∈ [0, 1]} to more general Banach space
valued valued processes on more general index sets.

Definition 3.35. Given a separable Banach space U and an index set I ⊆ R, a U-valued stochastic process
X = {X(t) : t ∈ I} on (Ω,F ,P) is such that X(t) is a U-valued random variable for each t ∈ I . We say
the the process X a measurable if X : I × Ω→ U is measurable from B(I)⊗F → B(U).

We would like to understand when a processX belongs to a space of continuous functionsC(I;U). One
natural form of continuity that is easily obtained is known as mean square continuity. We define it below for
general

Definition 3.36. A U-valued process X = {X(t) : t ∈ I} is mean square continuous if

lim
t∈I
t→t0

E‖X(t)−X(t0)‖2 = 0, for each t0 ∈ I.

Proposition 3.37. Assume that t 7→ m(t) and (t, s) 7→ C(t, s) are continuous. Then X(t) defined by (3.6)
is mean square continuous.

Proof. Note that it suffices to assume that m(t) = 0 since we mean square continuity of X(t) − m(t)
implies mean square continuity of X(t). We note that by expanding the square,

E|X(t)−X(t0)|2 = C(t, t)− 2C(t, t0) + C(t0, t0)

and therefore mean-square continuity follows from continuity of C(t, s).

In general it was realized by Kolmogorov that mean square continuity of a process X was not enough to
prove sample path continuity of t 7→ X(t). Indeed, the process X defined by (3.6) is not even a measurable
process. Specifically, events that involves pathwise statements on X may are not measurable. For instance,
for each A > 0 the event{

ω ∈ R[0,1] : sup
t∈[0,1]

|ω(t)| ≤ A

}
=

⋂
t∈[0,1]

{
ω ∈ R[0,1] : |ω(t)| < A

}
is not in the product sigma algebra F on R[0,1] since it involves countably many intersections of measurable
events. This means that the even the statement “X(t) is continuous” is not a measurable event. In order to
get around this, one needs the idea of a modification.

Definition 3.38. Given a U-valued process X = {X(t) : t ∈ I} on a probability space (Ω,F ,P), a
U-valued process X̄ = {X̄(t) : t ∈ I} is a modification of X if

P
(
X̄(t) = X(t)

)
= 1 for all t ∈ I.

If the modification is almost surely continuous, then it is called a continuous modification.
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Remark 3.39. On R[0,1] one may view a modification as a family of measurable functions {It}t∈[0,1],
It : R[0,1] → R such that It(ω) = ω(t) P-almost surely. Namely It is the evaluation function away from
measure zero set. Moreover, a continuous modification is maps almost every ω ∈ R[0,1] to a continuous
function t 7→ It(ω).

Remark 3.40. It is important to note that we may assume a continuous modification is 0 on any probability
zero set and that the finite dimensional distributions match those of X . Consequently the law of {X(t) :
t ∈ I} is a measure on C(I;U) and shares the same covariance function as X .

The following theorem is due to Kolmogorov and gives a sufficient criterion for existence of a continuous
modification

Theorem 3.41 (Kolmogorov continuity). Let X = {X(t) : t ∈ [0, 1]} be a U-valued process that satisfies

E‖X(t)−X(s)‖β ≤ C|t− s|1+α (3.7)

for some positive constants α, β, C, then X has a continuous modification.

Proof. To get around the measurability problem, we restrict ourselves to dyadic times D ⊂ [0, 1]. Denote
Dn to be times of the form t = j2−n for 0 ≤ j ≤ 2n then D is defined by D =

⋃
n∈NDn, and is clearly a

countable dense subset of [0, 1]. To continue, we will denote the modulus of continuity of X on D by

δn(X) := sup
1≤j≤2n

‖X(j2−n)−X((j − 1)2−n)‖

Note that δn(X) is measurable since it only involves finitely many time evaluations of X . If we can show
that there exists γ > 0 and δ > 0 such that

P
(
δn(X) > 2−nγ

)
≤ C2−nδ, (3.8)

then by Borel-Cantelli, limn→∞ δn(X) = 0 P-almost surely and therefore t 7→ X(t) is P-almost surely
uniformly continuous on D. Since D is dense, it follows that we can define a continuous modification on
[0, 1] by,

X̄(t, ω) = lim
s∈D
s→t

X(s, ω)1Ω0(ω).

It remains to prove (3.8). This can be estimated as follows

P
(
δn(X) > 2−nγ

)
≤ 2n sup

1≤j≤2n
P
(
‖X(j2−n)−X((j − 1)2−n)‖ > 2−nγ

)
≤ 2n(1+βγ) sup

1≤j≤2n
E‖X(j2−n)−X((j − 1)2−n)‖β

≤ C2n(1+βγ)2−n(1+α)

= C2−n(α−βγ) ≤ C2−nδ

If one chooses γ small enough so that 0 ≤ δ = α− βγ.

As a natural corollary we have the following existence theorem for Gaussian measures on C([0, 1]).

Corollary 3.42. Let m(t) and C(s, t) satisfy

|m(s)−m(t)| ≤ C1|t− s|α, |C(s, s)− 2C(t, s)− C(t, t)| ≤ C2|t− s|2α, (3.9)

for positive constants C1, C2 and α ∈ (0, 1) and let C(s, t) be positive definite in the sense of (3.5). Then
there exists a Gaussian measure µ on C([0, 1]) with mean m(t) and covariance C(s, t).
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Proof. Following our construction above, we can build our canonical Gaussian process X = {X(t) : t ∈
[0, 1]} with the right covariance and mean. Furthermore conditions (3.9) imply that

E|X(t)−X(s)|2 ≤ C|t− s|2α.

This alone is not enough to apply Theorem 3.41. However since our process is Gaussian we can bound p-th
moments in terms of second moments.

E|X(t)−X(s)|p ≤ Cp
(
E|X(t)−X(s)|2

)p/2 ≤ Cp|t− s|αp
Therefore, choosing p large enough so that αp > 1, we see that Kolmogorov’s criterion is satisfied.

3.4.3 Modulus of continuity

We can deduce a more precise modulus of continuity on a continuous processX . The following inequality is
due to Garsia, Rodemich, Rumsey and Rosenblatt and is essentially a more quantitative Sobolev embedding
theorem. It allows us to transfer an integral bound to a pointwise estimate on the modulus of continuity,

Theorem 3.43 (Garcia-Rodemich-Rumsey-Rosenblatt [GRRR70]). Let Ψ and p be continuous strictly
increasing functions on R+ with p(0) = 0 and Ψ convex. Let U be a separable Banach space and
f ∈ C([0, 1];U) satisfy

B =

ˆ 1

0

ˆ 1

0
Ψ

(
‖f(t)− f(s)‖
p(|t− s|)

)
dsdt <∞. (3.10)

Then for all s, t ∈ [0, 1]

‖f(t)− f(s)‖ ≤ 4

ˆ |t−s|
0

Ψ−1

(
B

u2

)
dp(u).

Proof. Let I ⊆ [0, 1] be a closed interval and |I| denote it’s length. Then by monotonicity of Ψ and p we
have ˆ

I

ˆ
I

Ψ

(
‖f(t)− f(s)‖

p(|I|)

)
dsdt ≤ B.

Let {Ij}j∈N be a nested sequence of intervals I0 ⊃ I1 ⊃ . . . satisfying

p(|Ij |) = 1
2p(|Ij−1|),

and denote the Bochner integral average of f over Ij by

(f)j :=
1

|Ij |

ˆ
Ij

f(t)dt.

Note that by the monotonicity of p, |Ij | → 0 as j → ∞ monotonically. It follows by the Bochner triangle
inequality that

‖(f)j − (f)j−1‖ ≤
1

|Ij ||Ij−1|

ˆ
Ij

ˆ
Ij−1

‖f(t)− f(s)‖dtds,

and therefore by Jensen’s inequality (since Ψ is convex) and monotonicity of {|Ij |},

Ψ

(
‖(f)j − (f)j−1‖

p(|Ij−1|)

)
≤ 1

|Ij ||Ij−1|

ˆ
Ij

ˆ
Ij−1

Ψ

(
‖f(t)− f(s)‖
p(|Ij−1|)

)
dsdt

≤ 1

|Ij |2

ˆ
Ij−1

ˆ
Ij−1

Ψ

(
‖f(t)− f(s)‖
p(|Ij−1|)

)
dsdt

≤ B

|Ij |2
.
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Since Ψ is invertible and since p(|Ij−1|) = 2(p(|Ij−1|)− p(|Ij |)) we find

‖(f)j − (f)j−1‖ ≤ 2(p(|Ij−1|)− p(|Ij |))Ψ−1

(
B

|Ij |2

)
.

Summing over j ∈ N, we recognize the left-hand side as a telescoping series and the right-hand side as a
Riemann-Stieltjes integral, thereby obtaining

lim sup
j→∞

‖(f)j − (f)0‖ ≤
∑
j∈N
‖(f)j − (f)j−1‖ ≤ 2

ˆ |I0|
0

Ψ−1

(
B

u2

)
dp(u).

To complete the proof, we fix s, t ∈ [0, 1] with s < t and let I0 = [s, t] and choose a sequence of intervals
{Ij} to decrease to the point {s} so that by continuity of f in U , we have

(fj)→ f(s) in U ,

and therefore

‖f(s)− (f)0‖ ≤ 2

ˆ |t−s|
0

Ψ−1

(
B

u2

)
dp(u).

Making the same argument with s replaced by t concludes the proof since

‖f(t)− f(s)‖ ≤ ‖f(t)− f0‖+ ‖f(s)− f0‖.

Remark 3.44. Note that the both the integrals in (3.10) are singular and there is some competition between
the choice of Ψ and p which allow both integrals to converge.

This theorem can be applied to give almost sure quantitative regularity improvements to Kolmogorov’s
theorem, specifically Hölder regularity. Define the space of Hölder continuous functions Cγ([0, 1];U) to be
the set of f ∈ C([0, 1];U) such that

‖f‖Cγ := sup
t6=s

‖f(t)− f(s)‖
|t− s|γ

<∞.

Exercise 3.10. Show that Theorem 3.43 can be used to prove Morrey’s inequality. That is for each s ∈ (0, 1)
and p ≥ 1, if γ = s− 1

p > 0, and f ∈ C∞([0, 1]), then

‖f‖Cγ .

(ˆ 1

0

ˆ 1

0

|f(t)− f(s)|p

|t− s|sp+1
dsdt

) 1
p

.

This is an example of a Sobolev embedding. Specifically that the Sobolev space W s,p([0, 1]) continuously
embeds into a space of Hölder continuous functions Cγ([0, 1]) if γ = s− 1/p > 0.

Theorem 3.45. Let X = {X(t) : t ∈ [0, T ]} be as in Theorem 3.41 with condition (3.7) satisfied and
suppose that X(t) is already almost surely continuous. Then for any γ < α

β , we have

P (‖X‖Cγ <∞) = 1.
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Proof. We apply Theorem 3.43 with Ψ(x) = xβ and p(u) = u
2
β

+γ . By Fubini’s theorem and (3.7) we have

EB =

ˆ 1

0

ˆ 1

0
E
|X(t)−X(s)|β

|t− s|2+γβ
dsdt

≤ C
ˆ 1

0

ˆ 1

0
|t− s|α−γβ−1dsdt,

which converges if α > γβ and therefore B is almost surely finite. On the other hand

|f(t+ r)− f(r)| ≤
ˆ r

0
Ψ−1

(
B

u2

)
dp(u)

=
2 + γ

β
B1/β

ˆ r

0
uγ−1du

=
2 + γ

γβ
B1/βrγ

and therefore we have an estimate of the form

‖X‖Cγ([0,1]) .γ,β B
1/β <∞, P-almost surely

for γ < α
β .

Exercise 3.11. Show that the Gaussian measure µ constructed in Corollary 3.42 satisfies

µ(Cγ([0, 1])) = 1, for all γ < α.

In particular, show that this means the Wiener process W = {W (t) : t ∈ [0, 1]} with covariance function
C(s, t) = min{s, t} almost surely belongs to Cγ([0, 1]) for any γ < 1/2.

Exercise 3.12. Let W = {W (t) : t ∈ [0, 1]} be the Wiener process with covariance C(s, t) = min{s, t}.
Show that the choice of Ψ = exp(x2/4) and p(x) =

√
x in Theorem 3.43 gives the more precise modulus

of continuity for r ∈ (0, 1) small enough

|W (s+ r)−W (s)| ≤
√

2r log
(√

B/r
)
.

Note that this is a strict improvement over the Hölder modulus of continuity of the Brownian motion. (Hint:
Use exponential moments of |W (t)−W (s)|/

√
|t− s| and the change of variables y = log(

√
B/u) in the

integral for the modulus of continuity)

3.4.4 Continuous functions with values in a Hilbert space, Q-Wiener process

Much of what has been mentioned so far can be extended to Gaussian measures onC([0, 1];U), namely con-
tinuity functions on [0, 1] with values in U a separable Banach space. In this case, the dual of C([0, 1];U)
can be identified with M([0, 1];U∗) the space of all finite variation U∗-valued measures (see [BL74]). Con-
sequently for each s, t ∈ [0, 1] we can define a covariance function C(s, t) ∈ L(U∗,U) for each `1, `2 ∈ U∗
by

`1(C(s, t)`2) = Cµ(`1δs, `2δt).

and satisfies for each ν1, ν2 ∈M([0, 1];U∗)

Cµ(ν1, ν2) =

ˆ
[0,1]

ˆ
[0,1]

ν1(ds)(C(s, t)ν2(dt)).
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At this stage, things are very similar to the case of a general Gaussian measure on U and there is not
much hope of classifying such covariances C(s, t) ∈ L(U∗,U) without imposing an additional structure on
U . However, if U = H is a separable Hilbert space then things are much nicer. Indeed it can be seen that in
this case, for each s, t ∈ [0, 1], C(s, t) ∈ L1(H) (trace-class) since for any orthonormal basis {ek} ofH we
have by monotone convergence, Cauchy-Schwartz and Fernique’s theorem that

Tr |C(s, t)| =
∑
k

|〈C(s, t)ek, ek〉H| =
∑
k

|Cµ(ekδs, ekδs)|

=

ˆ
C([0,1];H)

∑
k

|〈ϕ(s), ek〉H〈ϕ(t), ek〉H|µ(dϕ)

≤
ˆ
C([0,1];H)

‖ϕ(s)‖H‖ϕ(t)‖H µ(dϕ)

≤
ˆ
C([0,1];H)

‖ϕ‖2 µ(dϕ) <∞.

Moreover C(s, t) is symmetric in the sense that for each h1, h2 ∈ C([0, 1];H)

〈C(s, t)h1, h1〉H = 〈h1, C(t, s)h2〉H (3.11)

and positive definite in the sense that for each {ai}ni=1 ⊂ R , {ti}ni=1 ⊂ [0, 1] and h ∈ H∑
ij

aiaj〈C(ti, tj)h, h〉H ≥ 0. (3.12)

In later sections it will be important to construct a Gaussian measure µ on C([0, 1];H) with a given
symmetric, positive definite, Hölder continuous covariance C : [0, 1] × [0, 1] → L1(H). Indeed, we have
the following analogue of Corollary 3.4.

Theorem 3.46. Letm : [0, 1]→ H andC(s, t) : [0, 1]× [0, 1]→ L1(H), be symmetric and positive definite
in the sense of (3.11) and (3.12) above and suppose that there exists α ∈ (0, 1) and constants C1 and C2

such that

‖m(t)−m(s)‖H ≤ C1|t− s|α ‖C(t, t)− 2C(s, t) + C(s, s)‖L1(H) ≤ C2|t− s|2α.

Then there exists a Gaussian measure µ on C([0, 1];U) with mean and covariance m and C given above
and for each γ < α we have

µ(Cγ([0, 1];H)) = 1.

Proof. We will use a similar Kolmogorov extension construction to the real valued case. For each finite
set of times T = {ti}i=1n ⊂ [0, 1] we can build a Gaussian measure µT on the product Hilbert space Hn
with mean (mT )i = m(ti) ∈ H and covariance (QT )ij = C(ti, tj) ∈ L1(H). The collection of measures
{µT : T ⊂ [0, 1] finite} form a consistent collection of measures and therefore by the Kolmogorov extension
Theorem there exists measure P on Ω = H[0,1] equipped with product sigma-algebra F = B(H)⊗[0,1] such
that for each s, t ∈ [0, 1] and each h1, h2 ∈ H and Xt(ω) = ω(t) we have

m(t) = EX(t), 〈C(s, t)h1, h2〉H = E〈X(s)−m(s), h1〉H〈X(t)−m(t), h2〉H.
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As in the proof of Corollary 3.4 we may assume m(t) = 0 by shifting and it follows that for {ek} an
orthonormal basis forH

E‖X(t)−X(s)‖2H =
∑
k

E|〈X(t)−X(s), ek〉H|2

=
∑
k

(〈C(t, t)ek, ek〉H − 2〈C(s, t)ek, ek〉H + 〈C(s, s)ek, ek〉H)

= ‖C(t, t)− 2C(s, t) + C(s, s)‖L1(H)

≤ C2|t− s|2α.

And therefore by Gaussianity we have

E‖X(t)−X(s)‖pH ≤ Cp|t− s|
αp.

It is now a simple matter to apply Theorem 3.41 and Theorem 3.43 to show that X = {X(t) : t ∈
[0, 1]} has a continuous modification X̄ whose law is a Gaussian measure µ on C([0, 1];H) such that
µ(Cγ([0, 1];H)) = 1 for all γ < α.

It is not hard to see that all of the examples of real-valued continuous Gaussian processes on [0, 1] can
be extended toH-valued processes.

Example 3.47. Let Q ∈ L+
1 (H) and suppose that C(s, t) = min{s, t}Q, then the associated cannonical

process W = {W (t) : t ∈ [0, 1]} is called a Q-Wiener process on [0, 1]. Analogous examples hold for the
bridge and Ornstein-Uhlenbeck processes.

3.5 White noise expansion
Formally speaking, on a separable Hilbert space H with orthonormal basis {ek}k∈N, white noise can be
thought of as a random variable of the form

ξ =
∑
k∈N

ξkek

for {ξk}k∈N a collection of iid standard Gaussian random variables. Such a ”Gaussian” random variable has
the property that each of it’s “modes” are decorrelated since formally speaking

E〈ξ, ei〉〈ξ, ej〉 = Eξiξj = δij . (3.13)

However, there is some trouble in interpreting such a random variable since the series (3.5) does not converge
almost surely in the Hilbert spaceH, since by the law of large numbers∑

k∈N
|ξk|2 =∞, P-almost surely.

Indeed we showed in Corollary 3.25 that the covariance of a Gaussian measure on an infinite dimensional
Hilbert space cannot be given by (3.13). The following theorem which says that a canonical Gaussian
random variable on a Banach space U always looks like a white noise on it’s Cameron-Martin space.

Theorem 3.48. Let µ be a Gaussian measure on U and {ek}k∈N be an orthonormal basis for it’s Cameron-
Martin spaceHµ and {ˆ̀k}k∈N the associated basis inRµ, with ek = Ĉµ ˆ̀

k, then

u =
∑
k∈N

ˆ̀
k(u)ek, µ- almost surely.
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Proof. Denote
ξ≤n(u) :=

∑
k≤n

ˆ̀
k(u)ek, and ξ(u) = u,

Then our goal is to show that ξ≤n → ξ, µ- almost surely. Note that {ξ≤n}n∈N is a U-valued martingale with
respect to the filtration Fn = σ(ˆ̀

1, . . . , ˆ̀
n) since for m ≤ n

Eµ[ξ≤n − ξ≤m|Fm] = 0.

Furthermore for each ` ∈ U∗, we have

`(ξ≤n(u)) =
∑
k≤n

ˆ̀
k(u)`(ek) =

∑
k≤n

ˆ̀
k(u)〈`, ˆ̀

k〉L2(µ),

and since {ˆ̀k} is an orthonormal basis forRµ it is easy to see that

lim
n→∞

`(ξ≤n) = `(ξ) µ-almost surely.

By independence of {ˆ̀k} this implies that µ-almost surely we have

`(ξ≤n) = Eµ[ `(ξ) |Fn].

A simple application of Fernique’s theorem implies that ξ is Bochner integrable with respect to Eµ[ · |Fn]
and therefore satisfies Eµ[ `(ξ) |Fn] = ` (Eµ[ ξ |Fn]), which implies

` (ξ≤n −Eµ[ξ|Fn]) = 0, µ-almost surely.

Using the separability of U and choosing {`k} ⊆ U∗ as in Exercise (2.1) so that ‖u‖ = supk∈N `k(u) we
find that (note that countability is crucial here since there is potentially a different measure 0 set for each `k)

ξ≤n = Eµ[ ξ |Fn] µ-almost surely.

Another application of Fernique’s theorem implies that ‖ξ‖ ∈ L2(µ) and so we can apply the Martingale
convergence theorem ([HvNVW16] Theorem 3.3.2) for Banach space valued martingales generated by ξ to
conclude

ξ≤n → ξ µ-almost surely.

An immediate corollary of this theorem is the following.

Corollary 3.49. If {ξk}k∈N is a sequence of iid standard Gaussian random variables on some probability
space (Ω,F ,P) and {ek}k∈N an orthonormal basis for Hµ associated to some Gaussian measure µ on a
Banach space U then

ξ(ω) =
∑
k∈N

ξk(ω)ek

converges P-almost surely in U with Law(ξ) = µ.

Remark 3.50. If U = H is a separable Hilbert space, then Theorem 3.48 is much simpler and follows
immediately from the Hilbert-Schmidt Theorem. Indeed, let Q ∈ L+

1 be the covariance of µ and by the
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Hilbert-Schmidt Theorem let {ek}k∈N the orthonormal basis of eigenfunctions and {qk}k∈N be the associ-
ated eigenvalues satisfying Qek = qkek. Then each h ∈ H can be written as

h =
∑
k∈N

ˆ̀
k(h)
√
qkek,

where ˆ̀
k(h) = 1√

qk
〈ek, h〉. SinceHµ = Q1/2(H), we see that {√qkek}k∈N is an orthonormal basis forHµ

and
Ĉµ ˆ̀

k =
1
√
qk
Q1/2(ek) = ek.

so that {ˆ̀k} are iid standard Gaussian random variables.

Example 3.51. Let W = {W (t) : t ∈ [0, 1]} be a Q-Wiener process on [0, 1], and let {ek}k∈N be the
orthonormal basis of eigenvectors and {qk}k∈N be corresponding eigenvalues satisfying Qek = qkek, then
for each t ≥ 0 we can write

W (t) =
∑
k∈N

√
qkekWk(t)

where {Wk(t)}, Wk(t) := 1√
qk
〈W (t), ek〉 are a standard iid real valued Wiener processes on [0, 1].

Remark 3.52. Suppose that ξ(t) is a square integrable Gaussian process with covariance Eξ(t)ξ(t) =
C(s, t), then 3.49 is a special case of the Karhunen-Loève expansion

ξ(t) =
∑
k

ξkλkϕk(t)

where {ξ} are iid standard Gaussian processes and {ϕk} are a orthonormal basis for L2([0, 1]) given by
eigenfunctions of the integral operator

Cϕ(t) =

ˆ 1

0
C(t, s)ϕ(s)ds.

and {λk} are the associated eigen-values and the series converges in L2([0, 1]).

Exercise 3.13. Show that the Wiener process W (t) on [0, 1] can be represented in terms of the random
Fourier series

W (t) = ξ0t+
√

2

n∑
k=1

ξk
sin(πkt)

πk

where {ξk}k∈N are cannonical iid Gaussian random variables and the convergence holds in C([0, 1]). (Hint:
use Exercise 3.9 and find a basis for the Cameron-Martin space using the appropriate Fourier basis in
L2([0, 1])).

3.6 Hilbert-Schmidt embeddings and cylindrical Wiener process
Now given a separable Hilbert spaceH, we would like to find a way to interpret the white-noise

ξ =
∑
k∈N

ξkek.

In light of Theorem 3.48 if H of is the Cameron-Martin space of some Banach space U , then we are done.
Such an approach is taken in the theory of abstract Wiener spaces. However, in practice, due to our charac-
terization of Gaussian measures on Hilbert spaces, it is much easier to find a Hilbert spaceH1 that contains
H such thatH is the cameron-Martin space for some Gaussian measure onH1.
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Indeed, suppose that there is a separable Hilbert space H1 such H is densely embedded in H1 and the
inclusion map

J : H → H1.

is a Hilbert-Schmidt operator, namely JJ∗ : H1 → H1 is trace-class onH1.

Exercise 3.14. One can always find a Hilbert spaceH1 with the above properties. Indeed define for a given
orthonormal basis {ek}k∈N forH define the norm

‖h‖2H1
:=
∑
k∈N

(1 + k2)−1|〈h, ek〉H|2

and let H1 be the closure of H with respect to the ‖ · ‖H1 . This can be viewed as an example of a negative
Sobolev space. Show that the inclusion J : H → H1 is Hilbert-Schmidt.

Exercise 3.15. For H and H1 as above, show that the centered Gaussian measure µ with covariance Q =
JJ∗ has (H, ‖ · ‖H) as it’s Cameron-Martin space.

This way of embedding a Hilbert space H into a large Hilbert space H1 in a Hilbert-Schmidt way can
also be used to define the notion of a process which is both white-in-time and white in the Hilbert space H
called a cylindrical Wiener process

Definition 3.53. WithH andH1 defined as above with Hilbert-Schmidt embedding J . Then a JJ∗- Wiener
process in H1 , W = {W (t) : t ∈ [0, 1]} is called a cylindrical Wiener process on H and satisfies for
h1, h2 inH1 and s, t ∈ [0, 1]

E〈W (s), h1〉H1〈W (t), h2〉H1 = min{s, t}〈J∗h1, J
∗h2〉H.

It is important to remark that a cylindrical Wiener process W on H does not actually take values in H.
This is the reason for embedding H into a larger Hilbert space H1. However in many ways the statistics of
W (t) don’t depend on the spaceH1. Indeed by Theorem 3.48 we can write

W (t) =
∑
k∈N

ekWk(t) (3.14)

where {Wk(t)}k∈N are a sequence of iid Wiener processes on R and {ek}k∈N is an orthonormal basis forH
and the convergence happens in H1. However, the formula (3.14) doesn’t explicitly depend on H1 and the
convergence clearly holds in any other Hilbert spaceH′′ such thatH embeds intoH′′ via a Hilbert-Schmidt
inclusion.

3.6.1 Hilbert-Schmidt mapping of a cylindrical Wiener process

In practice given a cylindrical Wiener process W (t) on a Hilbert spaceW ⊂ W1, and A a Hilbert-Schmidt
operator from W to another Hilbert space H (denote such operators by L2(W,H)) we will often make
reference to the process AW (t) even though W (t) doesn’t take values inW . However, in light of Theorem
3.48 and equation 3.14, we can naturally extend A toW1 in such a way that

AW (t) =
∑
k∈N

AekWk(t).

It is not surprising that the above series converges inH since∑
k∈N
‖Aek‖2H = Tr(A∗A) = Tr(AA∗) <∞,

and that AW (t) is an AA∗-Wiener process. This can be made more precise in the following theorem,
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Theorem 3.54. Let µ be a centered Gaussian measure on a separable Banach space U and suppose that
A ∈ L2(Hµ,H) for some separable Hilbert space H, then there exists a measurable extension Â : U → H
of A such that Â is µ almost surely a continuous linear operator and Â∗µ is a Gaussian measure onH with
covariance AA∗.

Proof. Let {ek} be an orthonormal basis in Hµ and ˆ̀
k = Ĉ−1

µ ek be the orthonormal basis in Rµ corre-
sponding to {ek}k∈N. In light of Theorem 3.48 we would like to define the extension Â to be

Âu :=
∑
k∈N

ˆ̀
k(u)Aek.

To make sense of this, we note that Sn(u) =
∑

k≤n
ˆ̀
k(u)Aek is a H-valued Martingale with respect to the

filtration Fn = {ˆ̀1, . . . , ˆ̀
n} and that

sup
n

Eµ‖Sn(u)‖2H ≤
∑
k∈N
‖Aek‖2H = Tr(AA∗) <∞.

Therefore, by Doob’s martingale convergence theorem we find that limn→∞ Sn(u) converges converges µ
almost surely inH define this limit to be Âu and 0 otherwise. Moreover in light of Proposition 3.11 we may
take the full measure set to be linear since up to a zero-measure set the limit is a limit of linear functions on
U . It follows that Â is µ almost surely linear. To see that Â∗µ is Gaussian with covariance AA∗, we note
that for each h ∈ H the sum

〈Âu, h〉H =
∑
k∈N

ˆ̀
k(u)〈Aek, h〉H

converges inRµ since {ˆ̀k(u)} are a complete orthonormal basis and therefore 〈Âu, h〉 is a Gaussian random
variable. Moreover for each h1, h2 ∈ H we have

ˆ
H
〈u, h1〉H〈u, h2〉HÂ∗µ(du) =

ˆ
U
〈Âu, h1〉H〈Âu, h2〉Hµ(du)

=
∑
k∈N
〈Aek, h1〉H〈Aek, h2〉H

=
∑
k∈N
〈ek, A∗h1〉µ〈ek, A∗h2〉µ

= 〈A∗h1, A
∗h2〉µ = 〈AA∗h1, h2〉H.

and therefore Â∗µ is a Gaussian measure with covariance AA∗.

This gives the following corollary for the cylindrical Wiener process.

Corollary 3.55. Let W (t) be a cylindrical Wiender process on W with Hilbert-Schmidt embedding J :
W → W1, and let A : W → H be Hilbert-Schmidt for some other Hilbert space H. Then there exists a
measurable linear extention Â :W1 → H such that

AW (t) := ÂW (t) =
∑
k∈N

AekWk(t).

defines an AA∗-Wiener process onH.
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4 The stochastic integral
In this section we consider two separable Hilbert spaces H andW and a cylindrical Wiener process W (t)
onW and a certain process Φ(t) taking values in Hilbert-Schmidt operators fromW toH that doesn’t ”see”
into the future. Our goal is to define the infinite dimensional Itô stochastic integral

ˆ ∞
0

Φ(s)dW (s),

and give it’s basic properties. This will prove useful in establishing a version of Itô formula in infinite
dimensions.

4.1 Cylindrical Wiener process on R+

As we have see, if we define the covariance operator

C(s, t) = min{s, t}Q

where Q ∈ L+
1 (H) (symmetric, positive definite, trace-class). Then the canonical stochastic process W =

{W (t) : t ∈ [0, 1]} associated with this Gaussian measure is known as a Q-Wiener process on [0, 1].
In many applications we would like to construct a process W = {W (t) : t ∈ R+} which lives on the

whole time interval R+ and not just on [0, 1]. A common way to do this is through the following definition.

Definition 4.1. A H-valued stochastic process W = {W (t) : t ∈ R+} on a probability space (Ω,F ,P)
is called is called a Q-Wiener process over R+ for some Q ∈ L+

1 (H) if it satisfies the following criteria:

1. W (0) = 0,

2. t 7→W (t) is almost surely continuous,

3. W has independent increments, that is for each 0 ≤ s1 < t1 ≤ . . . ≤ sn < tn < ∞ the random
variables

W (t1)−W (s1), . . .W (tn)−W (sn)

are independent random variables,

4. for each 0 ≤ s ≤ t ≤ 1, the law of W (t) −W (s) is a Gaussian random variable with mean 0 and
covariance (t− s)Q.

Exercise 4.1. Show that a continuous H valued process W = {W (t) : t ∈ R+} is a Q-Wiener process in
the sense of Definition 4.1 if and only if

1. for each {ti}ni=1 ⊆ R+, (W (t1), . . . ,W (tn)) is a Gaussian random vector inHn,

2. for each t, s ∈ R+ and h1, h2 ∈ H we have

EW (t) = 0 and E〈W (s), h1〉H〈W (t), h2〉H = min{s, t}〈Qh1, h2〉H.

It remains to construct a Q-Wiener process over R+. Of course we could use Kolmogorov extension
theorem and then continuity criterion tools from the previous section. However, as it turns out, the Wiener
process has a lot of self-similarity and essentially contains a version of the process on R+ inside of [0, 1].
In essence, by constructing a Q-Wiener process over [0, 1] we have already constructed one over R+. The
following proposition makes this precise.
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Proposition 4.2. Let W = {W (t) : t ∈ [0, 1]} be the canonical Q-Wiener process over [0, 1]. Then the
process Ŵ = {Ŵ (t) : t ∈ R+} defined for each t ∈ R+ by

Ŵ (t) = (t+ 1)W

(
1

1 + t

)
−W (1)

is a Q-Wiener process on R+.

Proof. First we remark that obviously Ŵ (0) = 0 and t 7→ Ŵ (t) is clearly continuous on R+ since t 7→
W (t) is continuous on [0, 1]. Moreover, for each t ∈ R+, Ŵ (t) is still a mean-zero Gaussian and therefore
for each {ti}ni=1 ⊆ R+, (Ŵ (t1), . . . , Ŵ (tn)) is a Gaussian random vector inHn. Finally we note that

E〈Ŵ (s), h1〉H〈Ŵ (t), h2〉H =

(
(1 + t)(1 + s) min

{
1

1 + s
,

1

1 + t

}
− (1 + s) min

{
1

(1 + s)
, 1

}

− (1 + t) min

{
1

(1 + s)
, 1

}
+ 1

)
〈Qh1, h2〉H

= (min{1 + s, 1 + t} − 1) 〈Qh1, h2〉H
= min{s, t}〈Qh1, h2〉H.

Remark 4.3. It is also possible to construct the Q-Wiener process over R+ using the theory developed in
the previous section using a weighted Banach space

CW (R+;H) :=
{
ϕ ∈ C(R+;H) : lim

t→∞
W (t)/t = 0

}
.

It is not hard to see that such a space is a Banach space with the norm

‖ϕ‖CW = sup
t∈R+

‖ϕ(t)‖
1 + t

.

Additionally in view of the law of large numbers any Wiener process can be shown to satisfy limt→∞
1
tW (t) =

0 almost surely so that it’s paths almost surely belong to CW (R+;H).

Of course now that we have defined a Q-Wiener process over R+, we can define a cylindrical Wiener
process inH over R+ in the natural way.

Definition 4.4. Given a separable Hilbert space H ⊆ H1 and a Hilbert-Schmidt inclusion J : H → H1 a
cylindrical Wiener process W = {W (t) : t ∈ R+} onH over R+ is a JJ∗-Wiener process onH1 over R+.

4.2 Admissible filtrations
Before discussing the stochastic integral, we need to introduce the concept of a filtration. In what follows,
we will assume that U is separable Banach space unless stated otherwise.

Definition 4.5 (Filtration). A collection of sub sigma-algebras (Ft)t∈R+ , Ft ⊂ F is known as a filtration
if it forms an increasing collection of sigma-algebra’s

Fs ⊆ Ft for s ≤ t.

Definition 4.6. We say that a U-valued stochastic processX = {X(t) : t ∈ R+} is adapted to the filtration
(Ft)t∈R+ if for each t ∈ R+, X(t) is measurable from Ft to B(U).
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Remark 4.7. One has to be very careful when considering modifications of stochastic processes, which
involves changing a process X at each time on P-null sets. Indeed if X adapted to a filtration (Ft)t∈I , it
is not necessarily true that any modification X̄ is still adapted to (Ft)t∈I since Ft may not contain all P
null sets. In this case is it often necessary to augment a filtration to include the P-null sets. The current
presentation specifically avoids doings this.

For a given U-valued stochastic process X = {X(t) : t ∈ R+} define the natural filtration

FX
t := σ(Xs : s ≤ t)

to be the smallest sub-sigma algebra of F such that X(s) is measurable for all s ∈ [0, t]. Then (FX
t )t∈R+

is a filtration and X is adapted to (Ft)t∈R+ . We interpret an event A ∈ FX
t to be such that by time t an

observer of X would be able to tell whether A has occurred or not.

Exercise 4.2. Let W = {W (t) : t ∈ R+} be a Q-Wiener process in a separable Hilbert spaceH and let

M(t) = sup
s∈[0,t]

‖W (t)‖H.

Show that for each a ∈ R+, the event {M(t) > a} belongs to FW
t . (Hint: use pathwise continuity to write

{M(t) > a} as a countable union of events in FW
t ).

In general, the natural filtration (FW
t )t∈R+ can be used to state a very important property of the Wiener

process, called the Markov property.

Proposition 4.8 (Markov property). Let W = {W (t) : t ∈ R+} be a Q-Wiener process in a separable
Hilbert spaceH and let (FW

t )t∈R+ be the natural filtration. Then W (t)−W (s) is independent of FW
s for

all s < t.

Proof. The proof is a simple consequence of independence of increments forW (t) and is left as an exercise.

Exercise 4.3. Prove Proposition 4.8.

In general, the natural filtration is not the only filtration of interest. It is often the case that we need to
augment the filtration by another stochastic process or by P-null sets. This is for instance the case when
studying weak solutions to SDE’s or in coupling arguments. When dealing with Wiener processes, we will
often consider the more general notion of an admissible filtration which is compatible with it’s independent
increments.

Definition 4.9 (Admissible filtration for Wiener process). Let W = {W (t) : t ∈ R+} be a Q-Wiener
process on a separable Hilbert spaceH. A filtration (Ft)t∈R+ is admissible for W if

1. W is adapted to (Ft)t∈R+

2. For every s < t, W (t)−W (s) is independent of Fs.

4.3 Progressively measurable processes
In general to define the stochastic integral, we will also need the stronger notion of progressive measurabil-
ity.
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Definition 4.10 (Progressive measurability). Given a filtration (Ft)t∈R+ , define the progressive sigma-
algebra P ⊆ B(R+)⊗F by

P =
⋂
t∈R+

{
A ∈ B(R+)⊗F : A ∩ ([0, t]× Ω) ∈ B([0, t])⊗Ft

}
.

The we say that a process X is progressively measurable if X : R+ × Ω → U is measurable from P to
B(U). Alternatively for each t ≥ 0, X|[0,t] : [0, t]× Ω→ U is measurable from B([0, t])⊗Ft to B(U).

It is a simple consequence of the definitions above that any progressively measurable process X is
measurable in the sense that the process X : R+ × Ω → U is measurable from B(R+) ⊗F → B(U),
as well as adapted to (Ft)t∈R+ . As far as the converse goes, we have the following, somewhat surprising,
result due to Ondreját and Seidler [OS13].

Theorem 4.11. Suppose that U is a Polish space (separable, metrizable space), andX = {X(t) : t ∈ R+}
is a measurable, (Ft)t∈R+ adapted process with values in U . Then there exists an (Ft)t∈R+ progressively
measurable process X̄ with values in U such that X̄ is a modification of X .

Exercise 4.4. In practice we rarely need to apply Theorem 4.11 since nearly all of the processes we will be
dealing with are continuous. Show that a processX = {X(t) : t ∈ R+}which is continuous and (Ft)t∈R+

adapted is also (Ft)t∈R+ progressively measurable.

Note that viewing the process as a measurable functionX : R+×Ω→ U allows us to define equivalence
classes of such U-valued functions and therefore can define Lebesgue/Bochner spaces with respect to the
measure λ = dt×P. Specifically, denote

L2(R+ × Ω ;U)

to be the equivalence class of all functions X : R+ × Ω → U measurable from B(R+)×F to B(U) that
are Bochner integrable with norm

‖X‖L2(R+×Ω ;U) :=

(ˆ
R+×Ω

‖X‖dλ

)1/2

<∞.

It well-known that the space L2(R+ × Ω;U) is complete and defines Hilbert space in the usual way just as
in the real-valued case. Additionally, given a filtration (Ft)t∈R+ , we define the subspace

L2
pr(R+ × Ω ;U) ⊆ L2(R+ × Ω ;U).

of progressively measurable processes. More precisely, we view an equivalence class of L2(R+ ×Ω ;U) as
an element of L2

pr(R+ × Ω ;U) if it contains a member which is measurable from P to B(U).

Proposition 4.12. Let U be a separable Banach space, then the space L2
pr(R+×Ω ;U) is a closed subspace

of L2(R+ × Ω ;U).

Proof. Suppose that {Xn}n≥0 is a sequence of processes in L2
pr(R+×Ω ;U), converging to X ∈ L2(R+×

Ω ;U). Since the limit X belongs to L2(R+ × Ω ;U), it is measurable from B([0, T ]) ⊗F to B(U) but
might not be something which is measurable from P to B(U), in fact, it probably isn’t. However, we only
need to show that X is equivalent to a progressively measurable process to prove the proposition.

It is a simple extension of the usual property of Lebesgue spaces to show that, up to a subsequence,
Xn(t, ω) → X(t, ω) in U for µ almost every (t, ω). Indeed, if ([0, t] × Ω,B([0, t]) ⊗Ft,dt × P) were
a complete measure space, then we would be able to argue that X was progressively measurable since
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pointwise almost everywhere convergence from a complete measure space to a measurable space implies
measurable. However, since ([0, t]× Ω,B([0, t])⊗Ft, µ) is not complete, we must argue with more care.
Note that the set

A = {(t, ω) ∈ [0, T ]× Ω ; lim
n→∞

Xn(t, ω) exists}.

is progressively measurable in the sense that 1A(t, ω) is progressively measurable. It follows that the process

X̄(t, ω) =

{
limn→∞X(t, ω) if x ∈ A
0 if x /∈ A.

is the pointwise everywhere limit of progressively measurable processes, and is therefore progressively
measurable. Since X is B([0, T ])⊗F measurable, then the set

B = {(t, ω) ∈ [0, T ]× Ω ; lim
n→∞

Xn(t, ω) = X(t, ω)} ⊂ A

is B([0, T ])⊗F measurable and dt×P(Bc) = 0. Therefore X̄ may be modified on a µ null set to equal
X .

Remark 4.13. It is natural to also define the space L2
ad(R+ × Ω ;U) of equivalence classes which contain

one adapted processes. Indeed, Theorem 4.11 implies that adapted and progressively measurable processes
are equivalent and therefore L2

ad(R+ × Ω ;U) = L2
pr(R+ × Ω ;U), even though an adapted process (unless

right-continuous) is certainly not progressively measurable.

4.4 Continuous martingales
Before continuing it will be convenient to review some basics about continuous time Martingales in Banach
spaces. In what follows let (Ω,F ,P) be a probability space and U be a separable Banach space and I ⊆ R+

and index set. We will mostly be interested in the case when I is an uncountable subset as the assumption is
that the reader is already familiar with discrete time Martingales.

Definition 4.14. A stochastic process M = {M(t) : t ∈ I} with values in U is a martingale with respect
to a filtration (Ft)t∈I if

1. M is adapted to (Ft)t∈I ,

2. E‖M(t)‖ <∞ for all t ∈ I ,

3. E[M(t)|Fs] = M(s) for all s ≤ t, s, t ∈ I .

Exercise 4.5. Let W = {W (t) : t ∈ R+} be a cylindrical Wiener process on a Hilbert space W and let
Ft = σ(W |[0,t]). Show that W = {W (t) : t ∈ R+} has the property that for t, s ∈ R+ the increment
W (t + s) −W (t) is independent of Ft and therefore W is a continuous (Ft)t∈R+ martingale with values
inW1

Many of the theorems for R valued martingales can be proven for certain functionals of Banach space
valued Martingales.

Definition 4.15. A real-valued process M = {M(t) : t ∈ I} is said to be a sub-martingale if both 1. and
2. hold, but instead 3. is replaced by

E[M(t)|Fs] ≥M(s).

Alternatively a M is a super-martingale if −M is a sub-martingale.
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Exercise 4.6. Suppose that M = {M(t) : t ∈ I} is a U-valued martingale with respect to (Ft)t∈I . Show
that {‖M(t)‖ : t ∈ I} is sub-martingale. In addition if g : R+ → R+ is an increasing convex function
such that Eg(‖M(t)‖) <∞ show that {g(‖M(t)‖) : t ∈ I} also a sub-martingale.

The following theorem follows from a theorem by Doob for real-valued sub-martingales. The proof is
classical and can be found in [KS91] Theorem 3.8.

Theorem 4.16. Suppose that M = {M(t) : t ∈ I} is a U valued martingale with continuous paths
t 7→M(t) (if I is discrete then this is always true) then

P

(
sup
t∈I
‖M(t)‖ ≥ λ

)
≤ 1

λ
sup
t∈I

E‖M(t)‖.

Moreover, if for each p > 1, E‖M(t)‖p <∞ then

E

(
sup
t∈I
‖M(t)‖p

)
≤
(

p

p− 1

)p
sup
t∈I

E‖M(t)‖p.

In it convenient to study spaces of Martingales. Specifically, fix a T > 0 and denote by M2
T (U) the

space of all continuous U-valued square integrable Martingales with M(0) = 0. By square integrable, we
mean E‖M(t)‖2 <∞ for every t ∈ [0, T ]. We can define a norm forM2

T (U) by

‖M‖M2
T (U) :=

(
E sup
t∈[0,T ]

‖M(t)‖2
)1/2

.

Note that since ‖M(t)‖ is sub-martingale, then we have for all t < T

E‖M(t)‖ ≤ E‖M(T )‖.

Therefore by Doobs inequality
‖M‖2M2

T (U) ≤ 4E‖M(T )‖2,

and therefore ‖ · ‖M2
T (U) is a well defined norm. A important fact about Martingales is that they are stable

under convergence with respect to ‖ · ‖M2
T (U).

Proposition 4.17. The spaceM2
T (U) with norm ‖ · ‖M2

T (U) is a Banach space.

Proof. Let {Mn} be a Cauchy sequence inM2
T (U). Note that this implies that there exists a subsequence

{Mnk} such that

P

(
sup
t∈[0,T ]

‖Mnk −Mnk−1
‖ > 2−k

)
< 2−k.

It follows by Borel-Cantelli and completeness of C([0, T ];U), that there is a continuous limit M(t) such
that Mnk converges to M in C([0, T ];U). Using the completeness of L2(Ω;U) we deduce that for each t
Mnk(t)→M(t) in L2(Ω;U). Therefore since Mnk is a martingale we can pass the limit

E (M(t)|Fs) = M(s)

P-almost surely to conclude that M(s) is a continuous Martingale. It follows that M(t) − Mnk(t) is a
continuous Martingale and by Doobs inequality

‖M −Mnk‖
2
M2

T (U) ≤ 4E‖M(T )−Mnk(T )‖2 → 0.

Therefore since {Mn} was Cauchy, we have that Mn →M inM2
T (U).
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4.5 Constructing the stochastic integral
In what follows, letW be a separable Hilbert space and let W = {W (t) : t ∈ R+} be a cylindrical Wiener
process on W with respect to some probability space (Ω,F ,P). In light of Theorem 3.54, we will often
refer to a cylindrical Wiener process on a separable Hilbert spaceW without referencing the Hilbert space
W1 or the Hilbert-Schmidt inclusion J and will implicitly assume it takes values in some larger HilbertW1.

LetH be another separable Hilbert space and denote L2(W,H) the space of Hilbert-Schmidt operators
fromW toH, namely the space of all operators A :W → H such that AA∗ : H → H is trace class.

Proposition 4.18. The space L2(W,H) is a separable Hilbert space with the inner product

〈A1, A2〉L2 = Tr(A1A
∗
2).

Proof. The Hilbert space property is obvious from the definition and that fact that the trace class operators
form Banach space. To see separability, let {ek}k∈N be a complete orthonormal system inW and {hk}k∈N
be a complete orthonormal system inH. Then the mapping

A 7→ (〈Aek, hj〉H)k,j∈N

defines a linear isomorphism between L2(W,U) and `2(N × N). Separability follows since `2(N × N) is
separable.

In order to build the stochastic integral, just as with any integral, we will start by defining it on simpler
class of functions and then extend it to the large class. Many of the properties of the stochastic integral will
be established on this smaller and persist for the extension.

Definition 4.19. A process Φ = {Φ(t) : t ∈ R+} with values in L2(W,H) is called an elementary process
if there exists a sequence of times {ti}ni=1 ⊂ R+ with t0 < . . . < tn, and a collection of L2(W,H) -valued
random variables {Φk}n−1

k=0 with Φk being Ftk measurable and E‖Φk‖2L2 < ∞ such that Φ can be written
as

Φ(t) =

n∑
k=1

Φk1(tk−1,tk](t).

It is easy to see that an elementary process is adapted to the filtration (Ft)t∈R+ . and that it belongs
to the Lebesgue/Bochner space L2(R+ × Ω;L2(W,H)). Moreover an elementary process is also a simple
L2(W,H) valued function on R+ × Ω. Denote the subspace of elementary processes by

L2
el(R+ × Ω;L2(W,H)).

We have the following density result:

Proposition 4.20. The elementary processes are dense in L2
pr(R+ × Ω;L2(W,H)).

Proof. Let Φ ∈ L2
pr(R+ × Ω;L2(W,H)) be a progressively measurable representative. We may assume

with out loss of generality that (t, ω) 7→ ‖Φ(t, ω)‖U is bounded, since by dominated convergence

lim
R→∞

ˆ
‖Φ‖2L21{‖Φ‖L2>R} dλ = 0.

Moreover in view of the time-integrability of Φ(t), we can also assume that t 7→ Φ(t) is supported on [0, T ]
since

lim
T→∞

ˆ
‖Φ‖2L21[0,T ]dλ =

ˆ
‖Φ‖2L2dλ
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We begin by regularizing the process and defining the continuous process Φ̂ε(t) by

Φ̂ε(t, ω) = ε−1

ˆ t

(t−ε)∨0
Φ(s, ω)ds.

We claim that Φ̂ε is progressively measurable. Indeed since Φ is progressively measurable, the process
Φ(s)1[(t−ε)∨0,t](s) is measurable with respect to B([0, t]) ⊗Ft. Furthermore, the integrability of Φ with
respect to λ means that we may apply Fubini’s theorem to Φ(s)1[(t−ε)∨0,t](s) to conclude that

ω 7→
ˆ ∞

0
Φ1[(t−ε)∨0,t](s, ω)ds

is Ft measurable, hence Φ̂ε(t) is adapted. Since Φ̂ε(t) is now continuous and adapted, we conclude that
Φ̂ε(t) is also progressively measurable. Now, the fact that Φ̂ε is continuous, means that the elementary
process

Φn,ε(t) =

2n−1∑
k=0

Φ̂ε(kT2−n, ω)1(kT2−n,(k+1)T2−n](t)

converges pointwise in (t, ω) to Φ̂ε in L2(W,H). Since both Φ̂ε and Φnε are uniformly bounded we may
apply the bounded convergence theorem to conclude

lim
n→∞

ˆ
‖Φ̂ε − Φn,ε‖2L2dλ = 0.

Finally, since for almost every t ∈ [0, T ] and every ω ∈ Ω, Φ̂ε
t(ω) → Φt(ω) in U as ε → 0, we may again

use the bounded convergence theorem to show

lim
ε→0

ˆ
‖Φ− Φ̂ε‖2L2dλ = 0.

Remark 4.21. Naturally, in view of Remark 4.13, since L2(W,U) is separable, this implies that simple
processes are also dense in L2

ad(R+ × Ω;U).

If Φ is an elementary process in L2(W,H) then we define it’s stochastic integral with respect to W as
theH-valued random variable defined by

ˆ ∞
0

Φ(s)dW (s) :=
n∑
k=1

Φk−1∆Wk, ∆Wk := W (tk)−W (tk−1).

Note that W (tk) and W (tk−1) are cylindrical Wiener processes on W and so the product Φk−1∆Wk

has to be interpreted with care since W (t) doesn’t actually take take values inW . Naturally we would like
to apply Theorem 3.54 and define it in terms of a measurable linear extension to some large Hilbert space
W1. Indeed, for a given fixed ω1 ∈ Ω let Φ̂k−1(ω1) be the measurable extension toW1 given by Corollary
3.55 then we define

[Φk−1∆Wk](ω) := Φ̂k−1(ω)∆Wk(ω).

Of course since Φ̂k−1 is random, the random variable Φk−1∆Wk is not a Gaussian random variable. How-
ever since Φk−1 and ∆Wk are independent it behaves like a Gaussian with respect to the conditional expec-
tation E[·|Ftk−1

].
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Lemma 4.22. Let Φk and ∆Wk be as above. Then the following hold for each k ∈ N

E[Φk−1∆Wk|Ftk−1
] = 0

and
E
[
‖Φk−1∆Wk‖2H|Ftk−1

]
= ‖Φk−1‖2L2(tk − tk−1).

Proof. Note that since Φk−1 and ∆Wk are independent, we have for each ω1 ∈ Ω

E[Φk−1∆Wk|Ftk−1
](ω1) = EΦk−1(ω1)∆Wk = 0

and

E
[
‖Φk−1∆Wk‖2H|Ftk−1

]
(ω1) = E‖Φk−1(ω1)∆Wk‖2H

= Tr(Φk−1(ω1)Φk−1(ω1)∗)(tk − tk−1)

= ‖Φk−1(ω1)‖2L2(tk − tk−1),

since for each ω1 ∈ Ω, Φk−1(ω1)∆Wk is a centered Gaussian random variable inH with covariance

Φk−1(ω1)Φ∗k−1(ω1)(tk − tk−1).

The following result is fundamental to the definition of the Itô integral, known as the Itô isometry.

Proposition 4.23 (Itô Isometry). Let Φ be an elementary process, then the following identity holds

E

∥∥∥∥ˆ ∞
0

Φ(s)dW (s)

∥∥∥∥2

H
= E

ˆ ∞
0
‖Φ(s)‖2L2ds.

Proof. We have

E

∥∥∥∥ˆ ∞
0

Φ(s)dW (s)

∥∥∥∥2

H
=

n∑
j,k=1

E〈Φk−1∆Wk,Φj−1∆Wj〉H

First we argue that if k 6= j then

E〈Φk−1∆Wk,Φj−1∆Wj〉H = 0.

Indeed, without loss of generality, we assume that k < j and therefore

E〈Φk−1∆Wk,Φj−1∆Wj〉H =

ˆ
Ω
E[〈Φk−1∆Wk,Φj−1∆Wj〉H|Ftj−1 ](ω)dP(ω)

=

ˆ
Ω
E〈[Φk−1∆Wk](ω), Φ̂j−1(ω)∆Wj〉HdP(ω)

=

ˆ
Ω

〈
Φ̂k−1(ω)∆Wk(ω),E

(
Φ̂j−1(ω)∆Wj

)〉
H

dP(ω)

= 0,
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where we used the fact that Φk−1∆Wk and Φ̂k are Ftj−1 measurable and ∆Wj is independent of Ftj−1 as
well as Lemma 4.22. It follows that

E

∥∥∥∥ˆ ∞
0

Φ(s)dW (s)

∥∥∥∥2

H
=

n∑
k=1

E‖Φk−1∆Wk‖2H

=
n∑
k=1

ˆ
Ω
E[‖Φk−1∆Wk‖2H|Ftk−1

](ω)dP(ω)

=

n∑
k=1

ˆ
Ω
E‖Φ̂k−1(ω)∆Wk‖2HdP(ω)

=

n∑
k=1

E‖Φk−1‖2L2(tk − tk−1)

= E

ˆ ∞
0
‖Φ(s)‖2L2ds.

The Itô isometry recieves it’s name because it implies that the mapping I : L2
el(R+ ×Ω;L2(W,H))→

L2(Ω;H), given by

I(Φ) :=

ˆ ∞
0

Φ(s)dW (s), (4.1)

is an isometry. Combining this with the density of elementary processes in L2(R+ × Ω;L2(W,H)) given
by Proposition 4.20 and the completeness of Lebesgue/Bochner spaces, we find:

Corollary 4.24. The mapping I defined in (4.1) can be uniquely extended to an isometry from L2
el(R+ ×

Ω;L2(W,H)) → L2(Ω;H). Specifically, for each progressively measurable L2(W,H)- valued process
Φ = {Φ(t) : t ∈ R+}, we denote this extension byˆ ∞

0
Φ(s)dW (s),

and call it the Itô stochastic integral of Φ with respect to W .

For each t ∈ R+ we define the running time integral by
ˆ t

0
Φ(s)dW (s) :=

ˆ ∞
0

1[0,t](s)Φ(s)dW (s) =

n∑
k=1

Φk−1(W (tk ∧ t)−W (tk−1 ∧ t)),

where we have used the notation a ∧ b = min{a, b}. In this case the process

t 7→
ˆ t

0
Φ(s)dW (s)

is a continuousH-valued stochastic process. Moreover it is a martingale.

Lemma 4.25. Let Φ = {Φ(t) : t ∈ R+} be an elementary L2(W,H)-valued process. Then

t 7→
ˆ t

0
Φ(s)dW (s)

is a continuousH-valued square integrable martingale and satisfies

E sup
t∈[0,T ]

∥∥∥∥ˆ t

0
Φ(s)dW (s)

∥∥∥∥2

H
≤ 4E

ˆ T

0
‖Φ(s)‖2L2ds
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Proof. The fact that the process is continuous follows from the fact that t 7→W (tk∧ t) is continuous inW1.
Square integrability also follows from the Itô isometry. Hence we really just need to show the Martingale
property

E

[ˆ t

0
Φ(r)dW (r)

∣∣∣Fs

]
=

ˆ s

0
Φ(r)dW (r).

This is relatively straight-forward and is left as an exercise.

Exercise 4.7. Prove that t 7→
´ t

0 Φ(s)dW (s) in Lemma 4.25 is a Martingale. The final bound then follows
from Doob’s inequality and Itô‘ isometry.

Naturally, through corollary 4.24 the martingale property is preserved by passing limits in L2(R+ ×
Ω;H). Indeed, for each T > 0 define a mapping IT from elementary processes L2

el([0, T ]× Ω;L2(W,H))
to the space ofH-valued continuous square integrable MartingalesM2

T (H), by

ÎT (Φ) :=

ˆ ·
0

Φ(s)dW (s).

Since ÎT is continuous andM2
T is a complete space, we deduce the following easy consequence.

Proposition 4.26. Let Φ be a progressively measurable process in L2(R+×Ω;L2(W,H)), then the process

t 7→
ˆ t

0
Φ(s)dW (s) =

ˆ ∞
0

1[0,t]Φ(s)dW (s),

is a continuous square-integrableH-valued martingale.

Remark 4.27. It is possible to extend the class of integrands Φ to progressively measurable L2 beyond
L2(R+ × Ω;L2(W,H)) to progressively measurable processes Φ taking values in L2(W,H) such that

P

(ˆ ∞
0
‖Φ(s)‖2L2ds <∞

)
= 1,

called stochastically integrable processes. In this case the associated process t 7→
´ t

0 Φ(s)dW (s) is a local
martingale. We choose note to cover this general case here.

4.6 Properties of the stochastic integral
The stochastic integral has several properties that we will find useful. The first allows us to pass linear
operators through the stochastic integral.

Lemma 4.28. Let Φ be a progressively measurable process in L2(R+ × Ω;L2(W,H)) and let W =
{W (t) : t ∈ R+} be a cylindrical Wiener process on W , then for any other separable Hilbert space
Ĥ and a bounded operator A ∈ L(H, Ĥ), we have P-almost surely

A

(ˆ ∞
0

Φ(s)dW (s)

)
=

ˆ ∞
0

AΦ(s)dW (s). (4.2)

Proof. Note that AΦ is an L2(W, Ĥ)-valued progressively measurable process. Moreover if Φn is an ele-
mentary L2(W,H)-valued process, then AΦn is an elementary L2(W, Ĥ)-valued process. Moreover, it is
easy to see that (4.2) holds for elementary processes. Now suppose that Φn → Φ in L2(R+×Ω;L2(W,H))
then AΦn → AΦ in L2(R+ × Ω;L2(W, Ĥ)) and so by the definition of the stochastic integral we can pass
the limit almost surely in both sides of

A

(ˆ ∞
0

Φn(s)dW (s)

)
=

ˆ ∞
0

AΦn(s)dW (s)

and use the continuity of A to conclude.
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Proposition 4.29 (Stochastic Fubini). Fill me in

Another useful result is the following representation of the stochastic integral in terms of standard one-
dimensional stochastic integrals.

Proposition 4.30. Let Φ be an L2([0, T ] × Ω;L2(W,H)) progressively measurable process, then for
each each orthonormal basis {ek}k∈N of W , there exists a sequence of standard 1-d Wiener processes
{Wk(t)}k∈N such that for each t ∈ [0, T ], we have

ˆ t

0
Φ(s)dW (s) =

∑
k∈N

ˆ t

0
Φ(s)(ek) dWk(t)

P-almost surely and the convergence happens in L2(Ω;C([0, T ];H)).

Proof. Let Π≤n denote the projection onW to the first n elements of the basis {ek}

Π≤nh =
∑
k≤n

hkek,

and let Π≥n = Id−Π≤n. It is not hard to see that for elementary processes Φ and the fact that we can write
the measurable linear extension of Φ(s)Πn ∈ L2(W,H) acting on W (t) as

Φ̂(s)ΠnW (t) =
∑
k≤n

Φ(s)(ek)Wk(t).

and therefore ˆ t

0
Φ(s)ΠndW (s) =

∑
k≤n

ˆ t

0
Φ(s)(ek)dWk(s).

This can easily be extended to progressively measurable processes by realizing that if Φn is an elemen-
tary function approximation of some progressively measurable processes Φ, then Φn(ek) is an elementary
function approximation of theH-valued progressively measurable process Φ(ek). Next we note that

t 7→
ˆ t

0
Φ(s)Π≥ndW (s) =

ˆ t

0
Φ(s)dW (s)−

ˆ t

0
Φ(s)Π≤ndW (s)

is a continuousH-valued square integrable Martingale, so that by Doobs inequality

E sup
t∈[0,T ]

∥∥∥∥ˆ t

0
Φ(s)Π≥ndW (s)

∥∥∥∥2

H
≤ 4E

∥∥∥∥ˆ T

0
Φ(s)Π≥ndW (s)

∥∥∥∥2

H

= 4E

ˆ T

0
‖Φ(s)Π≥n‖2L2ds

= 4E

ˆ T

0

∑
k≥n
‖Φ(s)(ek)‖2Hds

→ 0 as n→∞,

by dominated convergence since ‖Φ‖L2 belongs to L2([0, T ]× Ω).

4.7 Burkhold-Davis-Gundy inequality
To be filled out
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4.8 Itô’s formula
One of the most powerful features of the stochastic integral is that certain functions of it can be written
as another stochastic integral, effectively allows one to use a chain rule. For instance, we will see that the
following formula holds∥∥∥∥ˆ t

0
Φ(s)dW (s)

∥∥∥∥2

H
=

ˆ t

0
‖Φ(s)‖2L2ds+

ˆ t

0

〈ˆ s

0
Φ(r)dW (r),Φ(s)dW (s)

〉
H
,

which implies that
´ t

0 ‖Φ(s)‖2L2ds is the quadratic variation associated with the martingale t→
´ t

0 Φ(s)dW (s)
and easily implies Itô’s isometry.

In what follows, we consider anH-valued process X = {X(t) ; t ∈ R+} given by

X(t) = X(0) +

ˆ t

0
ϕ(s)ds+

ˆ t

0
Φ(s)dW (s), (4.3)

where ϕ is a progressively measurable H-valued process in L1(R+ × Ω;H) and Φ is a progressively mea-
surable L2(W,H)-valued process in L2(R+ × Ω;L2(W,H)).

Remark 4.31. Such a process X(t) is often referred to as an Itô process or Itô diffusion and is often written
using stochastic differentials as a short-hand

dX(t) = ϕ(t)dt+ Φ(t)dW (t),

to be interpreted in the time integrated sense (4.3) above.

Additionally let F : R+×H → R be a twice Fréchet differentiable function whose derivatives are given
by

∂tF : R+ ×H → R
DF : R+ ×H → H∗ ∼= H
D2F : R+ ×H → L(H),

and are uniformly continuous on bounded subsets of R+ × H. For the process X(t) given above and the
Fréchet differentiable function F , we have the following result.

Theorem 4.32. The following formula holds P-almost surely for each t ∈ R+.

F (t,X(t)) = F (0, X(0)) +

ˆ t

0
〈DF (s,X(s),Φ(s)dW (s)〉

+

ˆ t

0
∂tF (s,X(s)) + 〈DF (s,X(s)), ϕ(s)〉ds

+

ˆ t

0
Tr
(
D2F (s,X(s))Φ(s)Φ(s)∗

)
ds.

Proof. By density of elementary functions it suffices to consider ϕ and Φ to be elementary functions. Fur-
thermore, by restricting to intervals of constant ϕ and Φ, we may reduce to the case where X(t) is given
by

X(t)−X(T0) = ϕ0(t− T0) + Φ0(W (t)−W (T0))

for all t ∈ [T0, T1] ⊂ R+ and ϕ0 and Φ0 are constant random variables measurable with respect to FT0 .
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Next, let T0 = t0 < t1 < . . . < tn = t be a partition of [T0, t] ⊂ [T0, T1]. For each k ∈ {1, . . . n}, we
denote by

∆tk = tk − tk−1, ∆kX = X(tk)−X(tk−1), ∆Wk = W (tk)−W (tk−1),

and note that we can write

F (t,X(t))− F (T0, X(T0)) =

n∑
k=1

F (tk, X(tk))− F (tk−1, X(tk))

+

n∑
k=1

F (tk−1, X(tk))− F (tk−1, X(tk−1))

Using Taylor expansion, we can write this as

F (t,X(t))− F (T0, X(T0)) =

n∑
k=1

∂tF (tk, X(tk))∆tk +

n∑
k=1

〈DF (tk−1, X(tk−1)),∆Xk〉

+
1

2

n∑
k=1

〈D2F (tk−1, X(tk−1))∆Xk,∆Xk〉+Rn

where

Rn =
n∑
k=1

ˆ 1

0
[∂tF (tk−1 + θ∆tk, X(tk))− ∂tF (tk, X(tk))]∆tkdθ

+
1

2

n∑
k=1

ˆ 1

0
〈[D2F (tk−1, X(tk−1) + θ∆Xk)−D2F (tk−1, X(tk−1))]∆Xk,∆Xk〉dθ

Clearly sending the the partition size supk ∆tk → 0, we see that P-almost surely

n−1∑
k=0

∂tF (tk+1, X(tk+1))∆tk →
ˆ t

0
∂tF (s,X(s))ds

and using the fact that ∆Xk = ϕ0∆tk + Φ0∆Wk we also have P-almost surely

n∑
k=1

〈DF (tk−1, X(tk−1)),∆Xk−1〉 →
ˆ t

0
〈DF (s,X(s)), ϕ0〉ds+

ˆ t

0
〈DF (s,X(s)),Φ0dW (s)〉.

It is not hard to show that

|Rn| ≤ sup
s≤supk ∆tk

‖∂tF (·+ s, ·)− ∂tF (·, ·)‖∞(t− T0)

+ sup
|y|≤supk |∆Xk|

‖D2F (·, ·+ y)−D2F (·, ·)‖∞
n∑
k=1

‖∆Xk‖2

and so using the fact that ∂tF and D2F are uniformly continuous that X(t) is continuous and
∑

k |∆Xk|2
is almost surely bounded as ∆tk → 0 we deduce that P-almost surely

|Rn| → 0

as the partition size supk ∆tk → 0.
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It remains to deal with the term

1

2

n∑
k=1

〈D2F (tk−1, X(tk−1))∆Xk,∆Xk〉 =
1

2

n∑
k=1

〈Φ∗0D2F (tk−1, X(tk−1))Φ0∆Wk,∆Wk〉

+
n∑
k=1

〈D2F (tk−1, X(tk−1))Φ0∆Wk, ϕ0〉∆tk

+
1

2

n∑
k=1

〈D2F (tk−1, X(tk−1))ϕ0, ϕ0〉(∆tk)2

= In1 + In2 + In3

It is easy to see using independence

E[〈D2F (tk−1, X(tk−1))Φ0∆Wk, ϕ0〉∆tk]2 = E〈D2F (tk−1, X(tk−1))Φ0Φ∗0ϕ0, ϕ0〉(∆tk)3

and therefore it is not hard to deduce that as supk ∆tk → 0

In2 → 0

in L2(Ω) (and therefore a subsequence goes P-almost surely) and similarly due to boundedness D2F we
have

In3 → 0

P-almost surely. For the remaining term In1 , we denote Gk := Φ∗0D
2F (tk−1, X(tk−1))Φ0 and note that if

k 6= j we have

E (〈Gk−1∆Wk,∆Wk〉 − Tr (Gk) ∆tk) (〈Gj−1∆Wj ,∆Wj〉 − Tr (Gj) ∆tj) = 0

and therefore

E

(
n∑
k=1

〈Gk−1∆Wk,∆Wk〉 − Tr (Gk) ∆tk

)2

= E
n∑
k=1

(〈Gk−1∆Wk,∆Wk〉 − Tr (Gk−1) ∆tk)
2

.
n∑
k=1

(∆tk)
2 → 0.

as supk ∆tk → 0. Therefore up to a subsequence we have shown that

In1 →
ˆ t

0
Tr
(
D2F (s,X(s))Φ(s)Φ(s)∗

)
ds

P-almost surely as supk ∆tk → 0.

5 Strongly continuous one-parameter semigroups
5.1 C0 semigroups
Before we study stochastic linear evolution equations we will need to cover some preliminaries for deter-
ministic linear evolution equations in Banach spaces, known as the theory of C0 semigroups, which will
serve as the theoretical underpinning for much of our discussion of linear and semilinear SPDE. Much of
the presentation here follows the book by Engel and Nagel [EN99] as well as the notes by Hairer.
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U of the form
∂tu(t) = Lu(t), u(0) = u ∈ U (5.1)

where L is a possibly unbounded operator on U with dense domain Dom(L). The time derivative above is
interpreted as the following strong limit in U

∂tu(t) = lim
h→0

u(t+ h)− u(t)

h
.

This problem (5.1) is refered to as the abstract Cauchy problem for L.
We will consider the following notion of well-posedness for the above equation.

Definition 5.1. We say that the Cauchy problem (5.1) is strongly well-posed if for each u ∈ Dom(L) there
exists a unique solution u(t) to (5.1) starting from u such that u(t) is strongly differentiable in time and if
{un} ⊆ Dom(L) is such that un → 0 in U and un(t) are the associated solutions then

un(t)→ 0

in U uniformly on compact sets of t.

If (5.1) is strongly well-posed, then the solution u(t) starting from initial data u ∈ Dom(L) should be
given by

u(t) = S(t)u

where {S(t) : t ∈ R+} is a family of linear operators on Dom(L) which map the initial data u to the
solution u(t) (it is linear because the evolution equation is linear).

Exercise 5.1. Show that if (5.1) is well-posed, then S(t) can be uniquely extended to a bounded linear
operator on U .

Well-posedness also means that the operators extension of the operators S(t) to U should satisfy S(0) =
Id, while uniqueness implies that they have a semigroup property S(t + s) = S(t)S(s), meaning that
evolving u forward by t + s should be the same as evolving u(t) forward by s or u(s) forward by t. This
motivates the following definition.

Definition 5.2. A family of linear operators {S(t) : t ∈ R+} is called a C0 semigroup if

1. S(0) = Id and for all t, s ∈ R+,
S(t+ s) = S(t)S(s),

2. S(t) is strongly continuous, namely for each u ∈ U the following limit holds in U

lim
t→0

S(t)u = u.

Remark 5.3. Note that strong continuity of S(t) is equivalent to convergence of S(t) → Id in the strong
operator topology and can generally be relaxed to showing that S(t)u→ Id for all u in a dense subset of U .
However, in general it is not necessarily that case that S(t) converges to Id in the operator norm. (We will
see an example of this later).

Example 5.4 (Heat equation). An easy example of a linear evolution equation on a Banach space is the heat
equation

∂tu− ∂2
xu = 0,

on [0, 1] with Dirichlet conditions u(0) = u(1) = 0. In this case one can take U = C([0, 1]) (or any Lp

space) and the semigroup is given by convolution the Green’s function K(t, x)

S(t)f := K(t, ·) ? f.
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Example 5.5 (Transport equation). suppose that b(x) is a smooth vector field on the torus Td, then the
transport equation

∂tu = b · ∇u.

is a linear evolution equation and the semigroup is given by the method of characteristics

S(t)u(x) = u(φt(x)),

where φt(x) is the flow associated with the ODE

d

dt
φt(x) = b(φt(x)), φ0(x) = x ∈ Td.

Remark 5.6. Note that the two examples studied about are fundamentally different since one canfact that
we are studying semigroups (as opposed to groups) is important here since the evolution of the equation
(3.37) may lose information over time. A typical examply of this is the heat equation

∂tu− ∂2
xu = 0.

However the semigroup is not a group since although it is possible to define a left inverse for S(t) the
associated inverse is not defined for all continuous functions (i.e. the backwards in time heat equation is not
well-defined).

Proposition 5.7. Let S(·) be a C0 semigroup on U

1. There exists constants C > 0, ω ∈ R such that

‖S(t)‖ ≤ Ceωt. (5.2)

2. For every u ∈ U , t 7→ S(t)u is a strongly continuous function.

Proof. First we claim that ‖S(t)‖ is uniformly bounded in a neighborhood of t = 0. Indeed if not then
there would exist a sequence of times tn → 0 such that ‖S(tn)‖ → ∞. Then by the uniform boundedness
principle (or it’s converse) there must exist a u ∈ U such that ‖S(tn)u‖ → ∞ as n → ∞, contradicting
strong continuity. Therefore there exists an r > 0 and C > 0 such that

sup
t∈[0,r]

‖S(t)‖ <∞.

Using the semigroup property we can see that for each t ∈ R+, there exists an integer n ≤ 1/r such that
t = nr + s where s ∈ [0, r) and therefore S(t) = S(r)nS(s). This implies that for each u ∈ U

‖S(t)‖ ≤ ‖S(r)‖n sup
s∈[0,r]

‖S(s)‖ ≤ Cn+1 ≤ Ceωt,

where ω = 1
r logC

To show continuity we note that for any s < t ∈ R+ and u ∈ U by the semigroup property we have

S(t)u− S(s)u = S(s) [S(t− s)u− u]

and so by (5.2)
‖S(t)u− S(s)u‖ ≤ Ceωs‖S(t− s)u− u‖

sending t→ s or s→ t completes the proof.
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The bound (5.3) says that the semigroup can’t grow (or decay) faster than an exponential, however
more can be said about asymptotic exponential growth (or decay) rates of S(t) as t → ∞. Indeed, by the
semigroup property we have for t, s ∈ R+

log(‖S(t+ s)‖) ≤ log(‖S(t)‖) + log(‖S(s)‖)

and therefore the function t 7→ log(‖S(t)‖) is sub-additive. It follows by Fekete’s subadditive limit theorem
that limt→∞

1
t log(‖S(t)‖) exists and is given by

ω0 := inf
t

log(‖S(t)‖)
t

. (5.3)

The value ω0 is often called the growth type or asymptotic growth of S(t). Clearly we have that ω0 ≤ ω
(where ω is from (5.2)) and that

‖S(t)‖ = O(eω0t), as t→∞.

Exercise 5.2. Show that for each ε > 0 there exists an Mε ≥ 1 such that we have upper and lower bounds

eω0t ≤ ‖S(t)‖ ≤Mεe
(ω0+ε)t

Given a C0 semigroup S(·) we can always associate a linear operator, called it’s infinitesimal generator
(or just generator) which is essentially it’s derivative at t = 0.

Definition 5.8. The infinitesimal generator L of S(t) is a linear operator L defined by

Lu := lim
t→0

S(t)u− u
t

on the set Dom(L) of elements u ∈ U where the above limit exists.

Recall that a linear operator A : Dom(A) ⊆ U → U is closed if for every {xn} ⊂ Dom(A) such that
xn → x in U and such that Axn → y, then x ∈ Dom(A) and Ax = y, or equivalently if it’s graph

GA = {(x, y) ∈ U × U : x ∈ Dom(A), y = Ax}

is closed in U × U . L is said closable if the closure of GA is still the graph of a linear operator, refered to as
the closure of L.

The following theorem shows that the generator L is always closed and that u(t) = S(t)u solves (5.1)
in a strong or time integrated sense, depending on whether u ∈ Dom(L) or U .

Theorem 5.9. Given a C0 semigroup S(·) on U the infinitesimal generator L is a densely defined closed
linear operator on U . Moreover, the Dom(L) is invariant under S(t) and for every u ∈ Dom(L), we have

∂tS(t)u = LS(t)u = S(t)Lu. (5.4)

Additionally, for every u ∈ U , and t > 0,
´ t

0 S(s)uds ∈ Dom(L) and we have

S(t)u− u = L

ˆ t

0
S(s)uds (5.5)
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Proof. First, we note that we can write the difference quotient in two ways

S(t+ h)u− S(t)u

h
= S(t)

S(h)u− u
h

=
S(h)− Id

h
S(t)u

when u ∈ Dom(L), the middle equality above converges to S(t)Lu and therefore both the left and the right
equalities also converge implying the invariance of Dom(L) under S(t) as well as formula (5.4). Moreover,
given a u ∈ U we have

h−1(S(h)− Id)

ˆ t

0
S(s)uds =

1

h

ˆ t

0
S(s+ h)u− S(s)uds

=
1

h

ˆ t+h

t
S(s)uds− 1

h

ˆ h

0
S(s)uds

Since t 7→ S(t)u is strongly continuous, sending h → 0 we see that the right-hand side converges strongly
and therefore

´ t
0 S(s)uds ∈ Dom(L) with

L

ˆ t

0
S(s)uds = S(t)u− u

To see density of Dom(L), for a given u ∈ U and t > 0 define a “regularized” un by

un = n

ˆ 1/n

0
S(s)uds.

and note that for each n un ∈ Dom(L) and by strong continuity un → u in U implying density of Dom(L).
To see closedness, take {un} ⊆ Dom(L) converging to u ∈ U such that Lun → y ∈ U then by

time-integrating (5.4) we find
S(h)un − un

h
=

1

h

ˆ h

0
S(s)Lun ds.

Sending n→∞ on both sides above we find

S(h)u− u
h

=
1

h

ˆ h

0
S(s)y ds.

By strong continuity, the right-hand side converges as h → 0 and therefore u ∈ Dom(L) and we deduce
Lu = y as required.

Exercise 5.3. Show that for any n ∈ N the Dom(Ln) is dense in U . (Hint: Mollify S(t)u in time by
integrating against a smooth approximation φε(t) of δ0).

Exercise 5.4. Show that a C0 semigroup is uniquely determined by it’s generator.

5.2 Characterization of the generator: Hille-Yosida theorem
In order to build a C0 semigroup from a closed generator L, we will need some elementary spectral theory.

Definition 5.10. Let A be a closed operator. We say that λ ∈ C belongs to the resolvent set ρ(A) if λ Id−A
maps Dom(A) one-to-one and onto U . The complement of ρ(A) in C is called the spectrum of A and is
denoted by σ(A).
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For a given closed operator, if λ ∈ ρ(A), then (λ Id−L) is invertible. It’s inverse

R(λ) = (λ Id−A)−1

is called the resolvent of A and maps U onto Dom(A). Since A is closed it is easy to see that R(λ) is also
closed, and therefore by the Closed Graph Theorem R(λ) is a bounded linear operator on U .

Exercise 5.5. Suppose that ρ(A) is non-empty and λ ∈ ρ(A). Show that γ ∈ σ(A) if and only if (λ− γ)−1

belongs to σ(R(λ)). Deduce from this the σ(A) is a closed subset of C.

Exercise 5.6. Show that for each λ, µ ∈ ρ(A) we have the resolvent identity

R(λ)−R(µ) = (µ− λ)R(µ)R(λ).

and therefore R(µ) and R(λ) commute.

Exercise 5.7. Use Neumann series expansion to show that that if λ, λ0 ∈ ρ(A) are such that |λ − λ0| ≤
‖R(λ0)‖−1, then

R(λ) =

∞∑
n=0

(λ0 − λ)nR(λ0)n+1,

and the series converges uniformly. Deduce that R(λ) is analytic on ρ(A).

When L is the generator of a C0 semigroup, the resolvent R(λ) of L can always be directly computed
from the semigroup via Laplace transform.

Proposition 5.11. Let S(t) be a C0 semigroup with generator L. If λ ∈ C satisfies Reλ > ω0, then
λ ∈ ρ(L) and the following formula holds

R(λ) =

ˆ ∞
0

e−λtS(t) dt,

where the right-hand side is understood as an improper Riemann integral.

Proof. Let ε = 1
2(Reλ− ω0), then for Tε chosen suitably large we can see that for t ≥ Tε

‖e−λtS(t)‖ ≤ e−εt

and therefore, combined with (5.2) impies that the Laplace transform

Z(λ)u =

ˆ ∞
0

e−λtS(t)udt

is well-defined. Next we claim that Z(λ) = R(λ). To show this, it suffices to realized that that e−λtS(t)
is in fact another C0 semigroup on U with generator L − λI and domain Dom(L). Therefore for each
u ∈ Dom(L)

e−λtS(t)u− u =

ˆ t

0
e−λsS(s)(L− λ Id)uds

sending t → ∞ and using the fact that Reλ > ω0 we conclude u = Z(λ)(λ Id−L)u. This implies that
Z(λ) is a left-inverse of (λ Id−L). To see it is a right inverse take u ∈ U and conclude that

e−λtS(t)u− u = (L− λ Id)

ˆ t

0
e−λsS(s)uds.

Sending t → ∞ again gives u = (λ Id−L)Z(λ)u, whereby we deduce that λ ∈ ρ(L) and that Z(λ) =
R(λ).
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We are now ready to prove the following characterization theorem for generators of C0 semigroups. The
version originally was due to

Theorem 5.12 (Hille Yosida). Let L be a closed, densely defined operator on U with

s(L) = sup{Reλ : λ ∈ ρ(L)}.

The following are equivalent.

1. L is the generator of a C0 semigroup S(·) with growth type ω0 ≤ s(L).

2. For each ω > s(L), there exists an M such that for each λ > ω and n ≥ 1

‖R(λ)n‖ ≤M(Reλ− ω)−n.

Proof. To see that 1 implies 2, we set ε = ω − ω0 and note that there exists an M such that

‖S(t)‖ ≤Me(ω0+ε)t,

the resolvent bound then follows from the fact that for Reλ > ω

R(λ)n =

ˆ ∞
0
· · ·
ˆ ∞

0
e−λ(t1+...+tn)S(t1 + . . .+ tn)dt1 . . . dtn.

To show that 2 implies 1, we will need to construct a semigroup from L to do this, we define the Yosida
approximation Ln := nLR(n). Note that the identity

Ln = n2R(n)− n Id

shows that Ln is a bounded operator. Next we note that for each u ∈ Dom(L)

nR(n)u− u = R(n)Lu

and therefore
‖nR(n)u− u‖ ≤ ‖R(n)Lu‖ ≤M(n− ω)−1‖Lx‖ → 0,

as n → ∞. It follows by the fact that nR(n) is uniformly bounded in n and density of Dom(L) that for
each u ∈ U

lim
n→∞

nR(n)u = u.

It follows that for each u ∈ Dom(L) that

‖Lnu− Lu‖ = ‖(nR(n)− Id)Lu‖ → 0,

so that Ln is indeed an approximation of L.
To build the semigroup, since Ln is bounded we define the approximation

Sn(t) = etLn =

∞∑
k=0

tk

k!
Lkn,

which clearly converges for all t ∈ R+. It follows from the formula Ln = n2R(n)− n Id that we have the
uniform in n

‖Sn(t)‖ ≤ e−nt
∞∑
k=0

tkn2k

k!
‖Rk(n)‖ ≤M exp

(
−nt+

n2

n− ω
t

)
= M exp

(
nωt

n− ω

)
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It follows that lim supn→∞ ‖Sn(t)‖ ≤ Meωt. We now want to show that Sn(t) converges. To estimate the
difference of Sn(t) and Sm(t) we use the fact that Ln and Lm commute with Sn(t) and Sm(t) to conclude
for u ∈ Dom(L)

∂sSn(t− s)Sm(s)u = Sn(t− s)Sm(s)[Lm − Ln]u.

Integrating this in s from 0 to t and choosing n,m large enough (relative to ω) so that ‖Sn(t)‖, ‖Sm(t)‖ ≤
e2ωt we find

‖Sn(t)u− Sm(t)u‖ ≤ e2ωt‖Lmu− Lnu‖.

Using the fact that Lnu→ Lu we deduce that Sn(t)u has a limit as n→∞ and therefore we define S(t)u
by

S(t)u = lim
n→∞

Sn(t)u.

Moreover the limit exists uniformly on bounded sets in t and therefore strong continuity of Sn(t)u implies
strong continuity of S(t)u. It follows from the uniform boundedness of Sn(t) that ‖S(t)‖ ≤ Meωt and
clearly S(t) inherits the semigroup property from Sn(t).

It remains to show the generator of S(t) is L. To see this we write

Sn(t)u− u =

ˆ t

0
Sn(s)Lnuds.

If u ∈ Dom(L) we can take the limit as n→∞ to deduce

S(t)u− u =

ˆ t

0
S(s)Luds.

Let L̂ be the generator of S(t). If we divide the above expression by t and take t → 0 we conclude that
Dom(L) ⊆ Dom(L̂) and that L̂ is an extension of L. However since λ > ω belongs to ρ(L̂) and ρ(L), L̂
cannot be a proper extension of L.

5.3 Adjoint semigroups
It will be useful later to use duality methods for semigroups to study weak solutions. This involves under-
standing the evolution of the adjoint S∗(t) : U∗ → U∗ of a C0 semigroup. Recall the definition of an adjoint
on a Banach space.

Definition 5.13. Let A : Dom(A) ⊂ U → U be a densely defined linear operator. Then the adjoint
A∗ : Dom(A∗) : U∗ → U∗ is is defined by

〈A∗`, u〉 = 〈`, Au〉

for all u ∈ Dom(A) and ` ∈ Dom(A∗) define by

Dom(A∗) = {` ∈ U∗ : u 7→ 〈`, Au〉 is continuous on Dom(A)} .

It is an easy exercise to show that the adjoint of any densely defined linear operator A is well-defined
and closed. However it may not be densely defined.

Exercise 5.8. Show that A∗ is closed even if A is not closed.
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As a consequence of this, it is possible that the adjoint S∗(t) of aC0 semigroup may fail to be continuous
on U . Indeed the adjoint L∗ of the generator L of S(t) may not be densely defined and cannot be the
generator of a C0 semigroup on S(t). The problem is that the space U∗ may be too big. This can be resolved
by closing Dom(A∗) in U∗ (which is potentially smaller than U∗) and restricting the semigroup S∗(t) to
this space.

Proposition 5.14. Let S(·) be a C0 semigroup on U and L be it’s generator. Define U† to be the closure of
Dom(L∗) in U . Then S∗(t) maps U† into itself and is a C0 semigroup on U† with generator L† with domain

Dom(L†) =
{
` ∈ Dom(L∗) : L∗` ∈ U†

}
.

Proof. Recall that for each u ∈ Dom(L), we have S(t)Lu = LS(t)u. Therefore for each ` ∈ Dom(L∗)
and u ∈ Dom(L) we have

|〈S∗(t)`, Lu〉| = |〈L∗`, S(t)u〉| ≤ ‖L∗`‖‖S(t)‖‖u‖

and so S(t)` belongs to Dom(L∗). Since S∗(t) is also bounded on U we easily see that S∗(t) is a well-
defined bounded operator on U†. Note that formula (6.2) implies that for each ` ∈ Dom(L∗) we have

S∗(t)`− ` =

ˆ t

0
S∗(s)L∗`ds

It follows that S∗(t)`→ ` in U∗ as t→ 0 for all ` ∈ Dom(L∗) since S∗(t) is bounded near zero on U†, by
density of Dom(L∗) in U†, we get that S(t) is a C0 semigroup on U†. Finally, note that the resolvent R†(λ)
on U† is given by

R†(λ) =

ˆ ∞
0

e−λtS∗(s)ds

and therefore R†(λ) is simply the restriction of R∗(λ) to U†. It follows that

Dom(L†) = Ran(R†(λ)) = Ran(R∗(λ)|U†) =
{
` ∈ Dom(L∗) : (λ− L∗)` ∈ U†

}
,

which corresponds to the stated domain of L†.

Although U† may not be dense in U∗ in the strong topology. It is dense in the weak-* topology and
therefore can be used to separate points in U . The following results shows this.

Lemma 5.15. U† is weak-* dense in U∗, namely for each ` ∈ U∗, there exists {`n} such that for every
u ∈ U , 〈`n, u〉 → 〈`, u〉.

Proof. For each ` ∈ U∗ define `n = nR∗(n)`. It is clear that `n ∈ Dom(L∗) ⊆ U†. However since

|〈`n − `, u〉| = |〈`, nR(n)u− u〉| ≤ ‖`‖∗‖nR(n)u− u‖ → 0

since we know from the proof of the Hille-Yoside theorem that nR(n)u→ u in U as n→∞.
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5.4 Analytic semigroups
In many cases, we are interested in the case when S(t) has some smoothing properties. This is for instance
the case for parabolic PDE like the heat equation. At the level of generality ofC0 semigroups, this smoothing
behavior is often associated with an important class of semigroups called analytic semigroups. In addition
to smoothing properties, this type of semigroup has a better perturbation theory with regards to infinitesimal
generator of the semigroup as well as a better spectral theory.

Our approach will define analytic semigroups in terms of spectral conditions on the generator. Specifi-
cally, let ω ∈ R and θ ∈ (0, π/2), and define the sector Sω,θ in C with angle θ by

Sω,θ = {λ ∈ C : | arg(ω − λ)| < θ} .

An illustration of Sω,θ is included below shaded blue.

ω

θ

Sω,θ

Im

Re
a

η

γa,η

σ(L)

Figure 1: Diagram of Sω,θ and γa,η

Definition 5.16 (Sectorial operator). We say that a densely defined closed linear operator L : Dom(L) ⊆
U → U is sectorial with angle θ if

1. there is an ω ∈ R such that σ(L) ⊆ Sθ,ω

2. there exists an M ≥ 1 such that the resolvent R(λ) = (λ Id−L)−1 satisfies

‖R(λ)‖ ≤M(|λ− ω|)−1

for all λ /∈ Sω,θ.

Definition 5.17 (Analytic semigroup). Given a sectorial operator L we can define a semigroup S(t) on U
known as an analytic semigroup by the inverse Laplace transform

S(t) :=
1

2πi

ˆ
γa,η

eλtR(λ) dλ (5.6)

where for a > ω and η > θ, γa,η is the curve given by

γa,η = {λ ∈ C : | arg(a− λ)| = η},
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oriented counter clockwise. See Figure 1 for a precise illustration of γ.

Since γa,η 6∈ Sω,θ, the resolvent bound implies that for λ ∈ γa,η we have that R(λ) is uniformly
bounded and therefore the integral is well-defined. Moreover the fact that R(λ) is analytic and Cauchy
integral formula implies that the definition of S(t) does not depend on the choice of a and η.

Example 5.18. Let L be a self-adjoint operator and suppose that for all u ∈ Dom(L), u 6= 0, we have
〈Lu, u〉 < 0 then L is sectorial.

Proposition 5.19. Let L be a sectorial operator with sector Sω,θ and let S(t) be defined by (5.6). Then S(t)
defines a C0 semigroup on U with generator L.

Proof. The semigroup property follows from the resolvent identity R(λ)R(µ) = (R(λ) − R(µ))/(µ − λ)
and the fact that for t, s,> 0 we have for ω < a < a′

S(t)S(s) =
1

(2πi)2

ˆ
γa′,η

ˆ
γa,η

eλteµs
R(λ)−R(µ)

λ− µ
dλdµ

=
1

(2πi)2

ˆ
γa,η

(ˆ
γa′,η

eµs

µ− λ
dµ

)
eλtR(λ)dλ+

1

(2πi)2

ˆ
γa′,η

(ˆ
γa,η

eλt

λ− µ
dλ

)
eµsR(µ)dµ

Note that we needed to take a < a′ so that the inner integrals above are well defined. Indeed with these
choices of contours, we can close the contours γa,η and γa′,η on the left by circles with increasing diameter
so that by Cauchy’s integral formula we have

1

2πi

ˆ
γa′,η

eµs

µ− λ
dµ = eλs and

1

2πi

ˆ
γa,η

eλt

λ− µ
dλ = 0.

Therefore
S(t)S(s) =

1

2πi

ˆ
γa,η

eλ(t+s)R(λ) dλ = S(t+ s)

To show strong continuity, we note that it suffices to show that for all u ∈ Dom(L)

lim
t→0

S(t)u = u.

It follows from the Cauchy integral formula that

1

2πi

ˆ
γa,η

eλt

λ− ω
dλ = 1

and therefore

S(t)u− u =
1

2πi

ˆ
γa,η

eλt
(
R(λ)− 1

λ− ω

)
udλ

=
1

2πi

ˆ
γa,η

eλt

λ− ω
R(λ)(L− ω Id)udλ

It follows from the resolvent bound that

‖eλt(λ− ω)−1R(λ)(L− ω)u‖ ≤MeReλt|λ− ω|−2‖(L− ω)u‖

and therefore by dominated convergence we have

lim
t→0

S(t)u− u =
1

2πi

ˆ
γa,η

R(λ)(L− ω Id)u

λ− ω
dλ = 0,
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where the last equality follows by closing the contour γa,η on the right using cirles of increasing diameter
and using the resolvent bound. Therefore S(·) defines a C0 semigroup.

Let L̂ denotes it’s generator and R̂(λ) its resovent. We now want to show that L̂ = L. To do this, it
suffices to show that

R(λ) = R̂(λ)

for λ sufficiently larger than ω. Indeed, by Proposition (5.11) we know that

R̂(λ) =

ˆ ∞
0

e−λtS(t)dt

and therefore using Fubini’s theorem and taking λ > a, we have

R̂(λ) =
1

2πi

ˆ
γa,η

ˆ ∞
0

e(µ−λ)tR(µ)dtdµ

=

ˆ
γa,η

1

λ− µ
R(µ)dµ = R(λ)

where we used Cauchy’s integral formula and closed the contour on the right.

Remark 5.20. Let L be a sectorial operator and define

s0 = sup{Reλ : λ ∈ σ(L)}.

Then it is not hard to see that by deforming the contour in definition 5.6 implies that for each ε > 0 there
exists Mε such that

‖S(t)‖ ≤Mεe
(s0+ε)t

and therefore by density of Dom(L) in U , s0 coincides with the type ω0 of S(·).

As it turns out, semigroups generated by sectorial operators have smoothing properties. Indeed such
semigroups have smooth dynamics in time. The consequence of this is that for t > 0 S(t)u instantly takes
values in Dom(Ln) for each n ∈ N, which can be interpreted as a smoothing property.

Proposition 5.21. Let L be a sectorial operator with sector Sω,θ then t 7→ S(t) is analytic and for each
u ∈ U , t > 0 and n ∈ N, S(t)u ∈ Dom(Ln) and

∂nt S(t)u = LnS(t)u.

Moreover for each there exists a constant M and ω > 0 such that

‖LS(t)‖ ≤
(

1

t
+ ω0

)
Meω0t (5.7)

Proof. Analyticity follows immediately from formula (5.6), the analyticity of t 7→ eλt, the fact that eλt

decays exponentially along γa,η and the fact that the contour integral converges uniformly in L(U). This
means that for each u ∈ U , S(t)u is infinitely differentiable. In particular the limit

lim
h→0

S(t+ h)u− S(t)u

h
= lim

h→0

S(h)− Id

h
S(t)u

exists for each u ∈ U and therefore S(t)u ∈ Dom(L) and

∂tS(t)u = LS(t)u.
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Moreover, using the fact that for u ∈ Dom(L), LS(t)u = S(t)Lu we have that for u ∈ U

lim
h→0

∂tS(t+ h)− ∂tS(t)

h
= lim

h→0

S(h)− Id

h
LS(t)

exists and therefore LS(t)u ∈ Dom(L) which implies S(t)u ∈ Dom(L2) and

∂2
t S(t)u = L2S(t)u.

Repeating this argument by induction proves that ∂nt S(t)u = LnS(t)u.
To prove (5.7) we can assume without-loss of generality that ω0 = 0 since we can always study the

rescaled semigroup e−ω0tS(t) with generator L− ω0 Id. Since for each t > 0, the operator LS(t) is closed
with domain Dom(LS(t)) = U and therefore by the closed graph theorem it is bounded. To estimate it’s
norm, we note that by definition of S(t) and the fact that LR(λ) = λR(λ)− Id we have for each a > 0

LS(t) =
1

2πi

ˆ
γa,η

eλtLR(λ)dλ

=
1

2πi

ˆ
γa,η

eλt(λR(λ)− Id)dλ

=
1

2πi

ˆ
γa,η

eλtλR(λ)dλ

where in the last equality we closed the contour on the right and used Cauchy’s integral formula. It follows
that after parameterizing γa,η by z(r) = a+ e±iηr and using the resolvent bound λ‖R(λ)‖ ≤M , that

‖LS(t)‖ .
ˆ ∞

0
e(a+r sin η)tdr =

eat

t sin η
.

The estimate follows upon taking a→ 0 and using the fact that sin η > 0.

Exercise 5.9. Show that (5.7) implies that for all t > 0 and n ∈ N we have

‖LnS(t)‖ ≤
(

1

t
+ ω0

)n
Mnenω0t.

The analyticity of t 7→ S(t) is an important property for semigroups generated by sectorial operators.
This is the reason why semigroups generated by sectorial operators are known as analytic semigroups.

Exercise 5.10. Show that in addition to being real analytic in time. S(t) as defined by 5.6 can be extended
to a map z 7→ S(z) which is analytic in the sector

Σθ = {0} ∪ {λ ∈ C : | arg(λ)| < θ} ,

and that for all |η| < θ, Sη(t) = S(eiηt) is a strongly continuous semigroup.

Indeed it is possible to prove the following characterization of analytic semigroups analagous to the
Hille-Yosida theorem.

Theorem 5.22. Let S(t) be a C0 semigroup on U with generator L and growth type ω0. The following are
equivalent:

1. There exists a θ ∈ (0, π/2) such that t 7→ S(t) can be extended to an analytic mapping on Σθ and for
all |η| < θ, Sη(t) = S(eiηt) is a strongly continuous semigroup with growth type ω0

2. There exists a θ ∈ (0, π/2) such that L is sectorial with sector Sω,θ for each ω > ω0.

Proof. We have already proved that 2. implies 1. The proof that 1. implies 2. is simple an uses the fact that
the generator of Sη(t) is Lη = eiηL, where L is the generator of S(t).
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5.5 Variational generators and rigged Hilbert spaces
It is useful to consider a class of generators commonly found in PDE which generate analytic semigroups.
In what follows, we assume thatH is a Hilbert space and that there exist another Hilbert space V ⊆ H which
is continuously and densely embedded in H. Furthermore, by Riesz representation, we identify H with it’s
dual H∗. Since we assumed V is dense in H, it is possible to embed H in V ∗ in through the duality pairing
given by the H inner product

〈v, h〉H, v ∈ V, h ∈ H,
so that we get the embedding sandwich

V ⊆ H ⊆ V ∗

each densely and continuously embedding into the next. Such Hilbert space pair (H,V) is often called a
rigged Hilbert space or Gelfand triple. In general, one can take V to be a topological vector space instead
of Hilbert.

Example 5.23. A simple example commonly used in PDE is given by Sobolev spaces

Hs ⊆ L2 ⊆ H−s,

for s > 0.

Definition 5.24 (Variational operator). Given a rigged Hilbert space V ⊆ H we say that a densely defined
closed operator L on Dom(L) ⊆ H is variational if

1. There exists a continuous Bilinear form B(·, ·) on V satisfying the coercivity bound

B(v, v) + λ‖v‖2H ≥ α‖v‖2V
for some constants λ ≥ 0 and α > 0.

2. We have
B(u, v) = −〈Lu, v〉H, for all u ∈ Dom(L) and v ∈ V

and
Dom(L) = {v ∈ V : h 7→ B(v, h) is continuous onH}.

Exercise 5.11. Suppose that a = aij
d
ij=1 and b = {bj}dj=1 be smooth bounded functions on Td and suppose

that a is uniformly elliptic in the sense that there exists a constant C ≥ 1 such that for each ξ = {ξi} ∈ Rd
and x ∈ Td

C−1|ξ|2 ≤
∑
ij

ξiξjaij(x) ≤ C|ξ|2.

Let L be the elliptic partial differential operator given by

L =
∑
ij

∂i(aij∂j) + b · ∇.

Show that L is a variational operator with rigged Hilbert spaceH = L2 and V = H1. (Hint: use Poincaré’s
inequality).

As it turns out variations generators are a convenient way to check that an operator generates an analytic
semigroup without needing to check any spectral conditions.

Proposition 5.25. Let L be a variational operator on H, then L is the generator of an analytic semigroup
S(t) with the bound

‖S(t)‖ ≤ eαt.
Moreover if B is symmetric, then L is self-adjoint.

Proof. See ([Tan79] Theorem 3.6.1)

69



5.6 Interpolation spaces, fractional powers and regularity
To study the precise regularity properties of analytic semigroups it is convenient to introduce a continuum
scale of subspaces of U corresponding to various levels of regularity. For simplicity of the notation we will
assume that S(t) is an analytic semigroup of negative type ω0 < 0, so that we can always take the sector to
be S0,θ and let L be it’s sectorial generator. As we’ve seen several times already, we can always extend to
the general case by rescaling the semigroup by e−(ω0+ε)tS(t) which corresponds to shifting the spectrum of
the generator to the left by ω0 + ε.

In this case since ‖S(t)‖ decays exponentially, it is possible to define the inverse of −L through the
resolvent formula

(−L)−1 =

ˆ ∞
0

S(t)dt.

This motivates the following definition for negative fractional powers of −L by

(−L)−α :=
1

Γ(α)

ˆ ∞
0

tα−1S(t)dt, (5.8)

where α > 0 and Γ(α) is the gamma function defined by

Γ(α) =

ˆ ∞
0

e−αttα−1dt.

. This definition makes sense for any α > 0 because of the exponential decay of S(t).

Exercise 5.12. Show that (5.8) is equivalent to the following functional calculus definition

(−L)−α =
1

2πi

ˆ
γa,η

(−λ)−αR(λ)dλ,

where ω0 < a < 0 and (−λ)−α = e−α log(−λ) is defined by it’s principle branch.

Exercise 5.13. Show that ((−L)−α)α>0 forms a semigroup. That is, for each α, β > 0 we have the identity

(−L)−α(−L)−β = (−L)−α−β

and that for each α > 0, (−L)−α is injective. (Hint: use change of variables and the fact that

Γ(α)Γ(β)

Γ(α+ β)
=

ˆ 1

0
tα−1(1− t)β−1dt,

holds for any α, β > 0).

Since (−L)−α is injective, we denote (−L)α its inverse with domain Dom((−L)α). It is not difficult to
see that (−L)α is closed with dense domain and that if 0 < α < β then

Dom((−L)β) ⊆ Dom((−L)α)

and that the semigroup property still holds for ((−L)α)α≥0 on a suitable domain. Naturally this gives rise
to the following family of subspaces associated to L.

Definition 5.26. Let L be a sectorial operator with ω < 0. For each α > 0 define the interpolation space
Uα := Dom((−L)α) with norm

‖u‖α := ‖(−L)αu‖,

and U−α the completion of U with respect to the norm

‖u‖−α := ‖(−L)−αu‖.
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Example 5.27. Let U be the Hilbert space L2(Td) and L = ∆ (the Laplacian) so that S(t) is the heat
semi-group on L2. Then the spaces Uα correspond to the Sobolev spaces Hα(Td).

Exercise 5.14. Let α ∈ (0, 1). Show that if u ∈ Dom(L) then

‖u‖α .α ‖Lu‖α‖u‖1−α. (5.9)

(Hint: show that

(−L)αu =
1

Γ(1− α)

ˆ ∞
0

t−αLS(t)udt,

which is well defined by (5.7), and split the integral
´∞

0 =
´ T

0 +
´∞
T and optimize in T .)

Remark 5.28. The inequality (5.9) is known as an interpolation inequality and shows that in some sense Uα
is and interpolation of Dom(L) and U . Moreover, a straight forward generalization of the previous exercise
shows that for α < β ∈ [0, 1] we have for u ∈ Uβ ,

‖u‖α .α,β ‖u‖
α/β
β ‖u‖1−α/β.

It is also possible to show a generalization of (5.7) for S(t) in Uα showing that S(t) instantaneously
gains regularity for all t > 0.

Proposition 5.29. Assume S(t) is an analytic semigroup of negative type ω0 < 0, then for each α ≥ 0 there
exists a constant Mα such that for t > 0 and u ∈ U we have S(t)u ∈ Uα and

‖S(t)u‖α ≤
Mα

tα
‖u‖. (5.10)

Proof. It suffices to prove this for α ∈ [0, 1]. Since we can use the semi-group property to iterate the
estimate to obtain any α ≥ 0. In this case we write

(−L)α = (−L)α−1(−L)

and therefore using the fact that S(t) commutes with any power of the generator, we find

(−L)αS(t) =
1

Γ(1− α)

ˆ ∞
0

s−αLS(t+ s)ds.

Using (5.7), we find for ω0 < ω < 0,

‖(−L)αS(t)‖ .
ˆ ∞

0
s−α

e−ω(t+s)

t+ s
ds = t−α

ˆ ∞
0

s−α

1 + s
ds,

where in the last equality we made the substitution s→ ts, and we are done since α < 1.

It will also be useful to understand the time regularity of S(t)u when u ∈ Uα. Indeed we know that
when u ∈ Dom(L), then S(t)u is in C1(U). In general, we will see that there is close connection between
u ∈ Uα, estimate and Hölder regularity of t 7→ S(t)u.

Proposition 5.30 (Hölder time-regularity). Let S(t) be an analytic semi-group of negative type with gener-
ator L, then for each α ∈ (0, 1) and s, t ∈ [0, 1] we have

‖S(t)u− S(s)u‖ .α |t− s|α‖u‖α.

and therefore t 7→ S(t)u is Hölder continuous in time, namely

S(·)u ∈ Cα([0, 1];U).
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Proof. It suffices to take s = 0 since if t > s we have S(t)− S(s) = S(t)(S(t− s)− Id) and ‖S(t)‖ . 1
on [0, 1]. By density of Dom(L) ⊆ Uα it suffices to show this for each u ∈ Dom(L). Note that for such u
and t > 0, we have by (5.10) that

‖S(t)Lu‖ = ‖(−L)1−αS(t)(−L)αu‖ ≤ ‖(−L)1−αS(t)‖‖u‖α . tα−1‖u‖α,

It follows that

‖S(t)u− u‖ =

∥∥∥∥ˆ t

0
S(s)Luds

∥∥∥∥ .

(ˆ t

0
s1−αds

)
‖u‖α .α t

α‖u‖α.

Remark 5.31. In general it is not true that u ∈ Uα are the values for which t 7→ S(t)u is Hölder continuous.
In the theory of semi-groups, it is natural to define the Favard space Fα of initial u leading to Hölder
continuous paths with norm

‖u‖Fα = sup
t>0

t−α‖S(t)u− u‖ <∞,

so that Proposition (5.30) is equivalent to the bound

‖u‖Fα . ‖u‖α.

6 Linear evolution equations with additive noise
We are now equipped with the tools necessary to start studying stochasic PDE. In this section we will study
the simplest case, namely linear equations with additive noise of the form

du = Ludt+BdW (t), u(0) = u ∈ U (6.1)

where W (t) is a cylindrial Wiener process in some Hilbert spaceW , L is the generator of a C0 semigroup
on U , and B :W → U is a bounded operator.

Note that immediatly, there are issues with interpreting this equation. Indeed the differential ’d’ notation
in stochastic analysis is short for the time-integrated equation

u(t) = u+

ˆ t

0
Lu(s)ds+BW (t).

However, just as we encountered with deterministic evolutions equations, u(s) may not take values in
Dom(L) unless u ∈ Dom(L) so that Lu(s) may not be defined (unless of course L generates and ana-
lytic semi-group). Additionally, since we have only assumed B to be bounded and W (t) is a cylindrical
Wiener process, we don’t expect BW (t) to take values in U .

In order to get around some of these difficulties, it is convenient to weaken our notion of solution. We can
do this be pairing both sides of the equation with a suitable “test function” ` ∈ Dom(L∗) and removing some
of the regularity requirements on u(t). Specifically we introduce the following notion of weak solution.

Definition 6.1 (Weak solution). A U-valued process {u(t) : t ∈ R+} is said to be a weak solution to (6.1)
if t 7→ u(t) is almost surely locally Bochner integrable and for every ` ∈ Dom(L∗), the following identity
holds P almost surely for each t ∈ R+

〈`, u(t)〉 = 〈`, u〉+

ˆ t

0
〈L∗`, u(s)〉ds+ 〈B∗`,W (s)〉W . (6.2)
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In the above identity (6.2) 〈·, ·〉 (without any subscript) denotes the dual pairing between U ′ and U and
the local time-integrability is required to make sense of the time integral in (6.2). Additionally, the mapping

w 7→ 〈B∗`, w〉W

is Hilbert-Schmidt fromW → R, since for any orthonormal basis {ek} ofW∑
k

|〈B∗`, ek〉W |2 = ‖B∗`‖2W <∞.

Therefore by Corollary 3.55, we can view 〈B∗`,W (s)〉W in terms of a measurable linear extension so that

〈B∗`,W (s)〉W =
∑
k∈N
〈B∗`, ek〉WW k(t)

for a sequence of iid standard Wiener processes {Wk(t)}.

Remark 6.2. The terminology weak solution means weak in the analytic (or PDE) sense. This should
not be confused with the notion of a probablistically weak solution in the theory of stochastic differential
equations. This terminology collision is an unfortunate consequence of the meeting of PDE and SDE. As
a result probabilistically weak solutions for stochastic PDE are often refered to as martingale solutions to
avoid confusion.

In this linear setting, we can view BW (t) as an inhomogeneity for the linear evolution equation. For
instance, if f(t) is a function that takes values in Dom(L), then the deterministic linear equation

∂tu(t) = Lu(t) + f(t) u(0) = u (6.3)

can be solved explicitly when u ∈ Dom(L) via Duhamel’s formula

u(t) = S(t)u+

ˆ t

0
S(t− s)f(s)ds.

Indeed since u, f(s) ∈ Dom(L), we can take the time derivative and find that

∂tu(t) = LS(t)u+

ˆ t

0
LS(t− s)f(s)ds+ f(s) = Lu(t) + f(s).

Of course the formula for u(t) doesn’t care if u or f(s) don’t take values in Dom(L) and therefore gives an
appropriate generalized notion of solution to (6.3) for any initial data u and f(t) ∈ U , called a mild solution.

This strategy can also be applied to the stochastic setting (6.1) and motivates the following explicit
formula

u(t) = S(t)u+

ˆ t

0
S(t− s)BdW (s). (6.4)

A solution to (6.1) of the form (6.4) is sometimes called a mild solution. The process

WL(t) :=

ˆ t

0
S(t− s)BdW (s)

on the right-hand side of 6.4 is called the stochastic convolution and plays a very important role in both
linear and non-linear theory.
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Remark 6.3. From our theory of the stochastic integral, we can see that WL(t) is well-defined if we can
find a Hilbert space H that U ⊆ H continuously embeds into with embedding J : U → H and for each
t > 0 JS(t)B is a Hilbert-Schmidt mapping fromW → H and satisfies for each t > 0

ˆ t

0
‖JS(s)B‖2L2(W,U)ds <∞.

However, at the level of generality we are dealing with it is not clear what conditions are sufficient for´ T
0 ‖u(t)‖dt <∞ almost surely since we do not have an Itô isometry in Banach spaces. None-the-less this

question can be answered when U is a Banach space of continuous functions (see [DPZ14] 5.5).

We can now show in what sense (6.4) solves equation (6.1).

Proposition 6.4. Let u(t) be given by (6.4), such that
´ T

0 ‖u(s)‖ds <∞ almost surely, then u(t) is a weak
solution to (6.1).

Proof. The proof uses a duality method and the dual semi-group S∗(t). Note that using the fact that S(t)u
solves

〈`, S(t)u〉 =

ˆ t

0
〈L∗`, S(s)u〉ds,

it suffices to show that WL(t) is a weak solution with zero initial data. To do this we choose ` ∈ Dom(L†),
and note that by stochastic Fubini, we have
ˆ t

0
〈L∗`,WL(s)〉ds =

ˆ t

0

ˆ s

0
〈L∗`, S(s− r)BdW (r)〉ds =

ˆ t

0

〈ˆ t

r
S∗(s− r)L∗`ds,BdW (r)

〉
Since S∗(t) is a strongly continuous semi-group on U† and ` ∈ Dom(L†) we find

ˆ t

r
S∗(t− r)L∗`ds =

ˆ t−r

0
S∗(s)L∗`ds = S∗(t− r)`− `

and therefore ˆ t

0
〈L∗`,WL(s)〉ds =

ˆ t

0
〈S∗(t− r)`, BdW (r)〉 −

ˆ t

0
〈`, BdW (r)〉

= 〈`,WL(t)〉 − 〈`, BW (r)〉.

Thus WL(t) is a weak solution for each ` ∈ Dom(L†). To extend this to all ` ∈ Dom(L∗) we follow
as similar proof to that of Lemma 5.15. Let ` ∈ Dom(L∗) and define `n = nR∗(n)`. It follows that
L∗`n = nR∗(n)L∗` ∈ Dom(L∗) ⊆ U† and therefore `n ∈ Dom(L†) (by the definition of Dom(L†)). As
in Lemma5.15 we have `n → ` weakly-*. Moreover we find that for each u ∈ U

|〈L∗`n − L∗`, u〉| = |〈L∗`, nR(n)u− u〉| ≤ ‖L∗`‖∗‖nR(u)− u‖ → 0,

since Dom(L) is dense in U . Therefore L∗`n → L∗` weakly-*. Choosing `n as an approximating sequence
and passing to the limit gives the result.

Moreover, we can show that every weak solution must be given by (6.4). To do this, we first need the
following Lemma.

Lemma 6.5. Let u(t) be weak solution to (6.1), then for each ψ(·) ∈ C1([0, T ]; Dom(L∗)) we have

〈ψ(t), u(t)〉 = 〈ψ(0), u〉+

ˆ t

0
〈∂sψ(s) + L∗ψ(s), u(s)〉ds+

ˆ t

0
〈ψ(s), BdW (s)〉.
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Proof. It suffices to prove this for functions ψ(t) = ϕ(t)`, where ` ∈ Dom(L∗) and ϕ(t) is C1 since such
functions are linearly dense in C1([0, T ]; Dom(L∗)). Applying Itô’s formula to ϕ(t)〈`, u(t)〉 (note that this
is real-valued process), we obtain

ϕ(t)〈`, u(t)〉 = ϕ(0)〈`, u〉+

ˆ t

0
〈∂sϕ(s)`+ ϕ(s)L∗`, u(s)〉ds+

ˆ t

0
ϕ(s)〈`, BdW (s)〉,

which is the desired formula.

We are now ready to prove the uniqueness property for (6.1).

Proposition 6.6. Every weak solution takes the form (6.4).

Proof. We again use a duality approach and for a fixed ` ∈ Dom(L†), let ψ(s) = S∗(t−s)` be a backwards
in time solution to the adjoint problem. Since S∗(t) is C0 semi-group on U† and Dom(L†) is the domain of
it’s generator, we see that ψ(·) ∈ C1([0, t]; Dom(L†)) and satisfies the backwards evolution equation

∂sψ(s) + L∗ψ(s) = 0, ψ(0) = S∗(t)`, ψ(t) = `

Therefore applying Lemma (6.5), we find

〈`, u(t)〉 = 〈S∗(t)`, u〉+

ˆ t

0
〈∂sψ(s) + L∗ψ(s), u(s)〉ds+

ˆ t

0
〈S∗(t− s)`, BdW (s)〉

= 〈`, S(t)u〉+

〈
`,

ˆ t

0
S(t− s)dW (s)

〉
.

Using the fact that Dom(L†) is dense in U† and that U† is weak-* dense in U∗, we conclude the proof.

Note that we are just shy of an existence and uniqueness theorem in U since we have not identified a
condition under which WL(t) is locally Bochner integrable in time and therefore we don’t know that every
term in (6.4) actually makes sense as a weak solution. Indeed, this is non-trivial at the level general abstract
Banach spaces. However when U = H is a separable Hilbert space by Itô’s Isometry and Fubini, we have

E

ˆ T

0
‖JWL(t)‖2dt =

ˆ T

0

ˆ t

0
‖S(s)B‖2L2(W,U)dt <∞,

which implies that if we have for each t > 0

ˆ t

0
‖S(s)B‖2L2(W,H)ds <∞

then any mild solution u(t) is well-defined and locally Bochner integrable in time This gives the following
existence and uniqueness corollary in the Hilbert space case.

Corollary 6.7. Let U = H be a separable Hilbert space, then (6.1) has a unique weak solution given by
(6.4).

6.1 Regularity of the stochastic convolution in Hilbert spaces
In what follows, we will restrict our attention to the case when U = H is a separable Hilbert space. Since
much of this relies on Itô’s formula, we InH, WA(t) inherits many properties from the stochastic integral.
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Theorem 6.8. Suppose that ˆ t

0
‖S(s)B‖2L2(W,H)ds <∞.

Then WL(t) is mean-square continuous and adapted to Ft and the trajectories t 7→ JWL(t) are almost
surely square integrable with Law(WL(·)) a centered Gaussian measure on L2([0, T ];H) with covariance

C(t, s) =

ˆ min{s,t}

0
S(t− r)BB∗S(t− r)dr.

Proof. The proof is an easy exercise using the properties of the stochastic integral. See [DPZ14] Theorem
5.2.
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