
Take-Home Exam - Solutions

Problem 1 (Continuous Dependence): Let U ∈ Rn be a bounded domain. Consider
the Dirichlet boundary value problem{

−∆u = f in U

u = g on ∂U.

Assume f can be continuosly extended to ∂U (i.e. it is uniformly continuous).

(a) Show that the solution u has continuous dependence in C(U) on the boundary data
g ∈ C(∂U) and the source term f ∈ C(U). Assume that a solution u always exists.
Namely, show that if gn → g in C(∂U) and fn → f in C(U) that the solution un → u
in C(U).

(b) Show that the solution has continuous dependence in Ck(U) on the boundary data
g ∈ Ck(∂U) and the source term f ∈ Ck(U) for any k ≥ 1 (again assume f and its
first k derivatives can be continuously extended to U).

Solution:

(a) We follow one of the proofs in the homework (repeated here for convenience). Namely
let v = u− λ|x|2, we know that

−∆v = f − λ2n ≤ 0

if λ = ∥f∥C(U)/2n. Therefore v = u − λ|x|2 is a subsolution and so by the maximum
principle and the fact that v ≤ g on ∂U , we find maxU v ≤ max∂U g. This implies that

max
U

u ≤ max
∂U

g +
∥f∥C(U)

2n
min
U

|x|2.

Applying the same argument to −u gives

max
U

−u ≤ max
∂U

−g +
∥f∥C(U)

2n
min
U

|x|2.

Putting these together gives the estimate

∥u∥C(U) ≤ C(∥f∥C(U) + ∥g∥C(∂U)),
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where the constant C doesn’t depend on u. Now let fn → f in C(U) and gn → g in
C(∂U), then by linearity we have that the associated solutions un and u satisfy

∥u− un∥C(U) ≤ C(∥f − fn∥C(U) + ∥gn − g∥C(∂U)).

Sending n → ∞ gives the result.

(b) To get Ck, just take the derivative of the equation and apply the same argument to
Dαu for |α| = k.

Problem 2 (Greens Function): Let U ⊆ Rn have C1 boundary (but is not necessarily
bounded). Recall, the Neumann boundary value problem takes the form{

∆u = 0 in U
∂u
∂ν

= f on ∂U,

for some function f ∈ C(∂U) with
∫
fdS(y) = 0, where ν denotes the outward facing normal

to ∂U . Note that
∫
∂U

fdS(y) is necessary since by the divergence theorem∫
∂U

f(y)dS(y) =

∫
∂U

∂νu(y)dS(y) =

∫
U

∆u dy = 0

(a) (Extra Credit) We seek a Green’s function G(x, y) that can express a solution u ∈
C2(U) as

u(x) = c+

∫
∂U

G(x, y)f(y)dS(y),

where f is assumed to have compact support on ∂U ,
∫
∂U

fdS(y) = 0 and c is a constant
that depends on u. Give a formula for the Green’s function in terms of a corrector
ϕx(y) that is chosen to satisfy a particular BVP. (Hint, you may take for granted the
formula we proved in class

u(x) =

∫
∂U

∂νΦ(x− y)u(y)− ∂νu(y)Φ(x− y)dS(y),

where Φ is the fundamental solution.)

(b) Consider the Neumann problem in the upper half-plane R2
+ = {x = (x1, x2) ∈ R2 :

x2 > 0}, {
∆u = 0 in R2

+

ux2 = f on {x2 = 0}.
Find the corresponding Green’s function and show that

u(x1, x2) =
1

2π

∫
R
ln[(x1 − y)2 + x2

2] f(y) dy.

is a solution.
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Solution:

(a) We will seek a corrector ϕx(y) that solves the following problem{
∆ϕx(y) = 0 in U

∂νϕ
x(y) = ∂νΦ(x− y)− h(y) on ∂U

for some function h(y) on ∂U with
∫
∂U

hdx = 1. Note we must include the extra
function h in the boundary condition since the Neumann problem must have mean
zero boundary condition by the divergence theorem

0 =

∫
U

∆ϕxdy =

∫
∂U

∂νϕ
x(y)dS(y).

Since we know that (at least for bounded U)
∫
∂U

∂νΦ(x−y)dS =
∫
U
∆yΦ(x−y)dy = 1,

this means that
∫
∂U

hdS = 1. Applying Green’s formula, ϕx(y) satisfies∫
∂U

ϕx(y)∂νu(y)dS(y) =

∫
∂U

∂νΦ(x− y)u(y)− h(y)u(y)dS(y) = 0.

Defining the Green’s functionG(x, y) = −Φ(x−y)+ϕy(x) and using that ∂νu(y) = f(y)
on ∂U we can combine this with the formula proved in class

u(x) =

∫
∂U

∂νΦ(x− y)u(y)− ∂νu(y)Φ(x− y)dS(y)

to obtain

u(x) =

∫
∂U

h(y)u(y)dS(y) +

∫
∂U

G(x, y)f(y)dS(y).

Defining c =
∫
∂U

h(y)u(y)dS(y) gives the formula.

(b) Lets use the corrector approach to solve the Neumann problem in R2
+{

∆u = 0 in R2
+

ux2 = f on {x2 = 0}.

Note, the problem above is stated in terms of the inward normal ux2 = −∂νu = f , so we
must carry around the minus sign. To find the solution, we must solve the corrector
problem we posed in part a). To do this, we use a reflection principle. Namely let
x̃ = (x1,−x2) and define

ϕx(y) = −Φ(y − x̃) = − 1

4π
ln((y1 − x1)

2 + (y2 + x2)
2).

Note that clearly ∆ϕx(y) = 0 since we moved the singularity away from the inside of
R2

+. Moreover

∂y2ϕ
x(y)|y2=0 =

−1

2π

x2

(y1 − x1)2 + x2
2

= ∂y2Φ(y − x)|y2=0.

3



Note that we don’t need the h here since U is unbounded. It follows that the Green’s
function is

G(x, y) = −Φ(x− y)− Φ(y − x̃).

This gives the formula (keeping in mind ∂y2 is the inward facing normal derivative)

u(x) =
1

2π

∫
R
ln
(
(y1 − x1)

2 + x2
2

)
f(y1)dy1.

Now lets justify that this formula actually satisfies the Neumann problem. We will
assume that f is continuous with compact support. To show this, we note first that
for each y and (x1, x2) ∈ R2

+, ∆ ln ((y − x1)
2 + x2

2) = 0 since we are away from the
singularity at x2 = 0. Therefore, if we are in the regime where f has compact support,
then we can pull the Laplacian inside the integral and conclude that

∆u(x1, x2) =
1

2π

∫
R
∆ ln

(
(y − x1)

2 + x2
2

)
f(y)dy = 0.

To see the boundary condition is met, we note that

∂x2u(x) =
1

π

∫
R

x2

(y − x1)2 + x2
2

f(y)dy

Since
1

π

∫
R

x2

(y − x1)2 + x2
2

dy =
1

π

∫
R

1

y2 + 1
dy = 1,

we have

|∂x2u(x1, x2)− f(x1)| ≤
1

π

∫
R

x2

(y − x1)2 + x2
2

|f(y)− f(x1)|dy

=
1

π

∫
R

1

y2 + 1
|f(x2y + x1)− f(x1)|dy

where we changed variables to obtain the last line. If f is assumed to be continuous, we
note that limx2→0+ f(x2y + x1) = f(x1) for each y. Therefore since f is also bounded
and 1

1+y2
is integrable we can use dominated convergence to conclude that

lim
x2→0+

1

π

∫
R

1

y2 + 1
|f(x2y + x1)− f(x1)|dy = 0

and therefore limx2→0+ ∂x2u(x1, x2) = f(x1).

Problem 3 (Soap bubble). Let U be a bounded domain in Rn with C1 boundary and let
φ be a smooth function on U satisfying φ|∂U < 0. Define the constraint set

Aφ := {u ∈ C2(U) : u|∂U = 0, u ≥ φ on U}
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and the surface energy of u

I[u] :=
1

2

∫
U

|Du(x)|2dx.

We seek to minimize the surface energy I[u] over all functions u ∈ Aφ constrained to lie
above φ. Physically, we can view the minimizer as the shape of a “soap bubble” attached to
the boundary ∂U and stretched over the obstacle φ. The soap bubble will try to minimize
its energy as best it can subject to constraint imposed by the “obstacle”.

Show that if such a minimizer exists, i.e. if there is a u∗ ∈ Aφ such that

I[u∗] = min{I[u] : u ∈ Aφ},

then u∗ is harmonic on the open set Vφ := {x ∈ U : u∗ > φ}, namely u∗ is harmonic wherever
it doesn’t touch φ. (Hint: for each test function ϕ compactly supported in {u∗ > φ}, show
that you can find and interval (−δ, δ) of 0, depending on ϕ such that u∗ + τϕ > φ for all
τ ∈ (−δ, δ).)

Solution: Let u∗ be a minimizer, I[u∗] = min{I[u] : u ∈ Aφ}, and fix ϕ ∈ C∞
c (U) with

suppϕ ⊆ Vφ. We want to show that u∗ + τϕ still belongs to the constraint set Aφ for τ in a
suitably small neighborhood (−δ, δ) of 0.

To show this, assume that ϕ ̸= 0 (otherwise we are done) and define for each n ≥ 1 the
open set

V n
φ = {x ∈ U : u∗ > φ+ 1/n}.

Clearly we have Vφ =
⋃∞

n=1 V
n
φ and therefore {V n

φ }∞n=1 is an open cover of suppϕ. Moreover
since V n1

φ ⊆ V n2
φ for n1 ≤ n2, we see that since suppϕ is compact, there exists an Nϕ such

that suppϕ ⊂ V
Nϕ
φ . With this in hand, it is clear that

u∗ + τϕ ≥ φ

as long as |τ | ≤ 1
Nϕ∥ϕ∥L∞ . It follows that for such τ , u∗ + τϕ ∈ Aφ. Therefore the function

i[τ ] = I[u∗ + τϕ] =

∫
U

|Du∗|2 dx+ 2τ

∫
U

Du∗ ·Dϕ dx+ τ 2
∫
U

|Dϕ|2 dx

is C1(−δ, δ) and has a minimum at τ = 0. Necessarily we must have i′(τ)|τ=0 = 0, and so∫
U

Du∗ ·Dϕ dx = 0.

Integrating by parts and using that ϕ has compact support gives∫
U

∆u∗ϕ dx = 0.

Since this holds for each ϕ ∈ C∞
c (U) with suppVφ = {u∗ > φ}, we conclude that ∆u∗ = 0

on Vφ.
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Problem 4 (Regularization and decay): Let u be the solution of Cauchy problem for
the heat equation on Rn {

ut −∆u = 0 in Rn × (0,∞)

u = f on Rn × {t = 0}.

where f ∈ C∞(Rn) ∩ Lp(Rn) for some p ∈ [1,∞].Show that for each r ≥ p and multi-index
α, there exist a constant C ≥ 0 (independent of u) such that

∥Dαu(·, t)∥Lr ≤ C

t
|α|
2
+n

2
( 1
p
− 1

r
)
∥f∥Lp

(Hint 1: You may want to use Young’s convolution inequality ∥f ⋆ g∥Lr ≤ ∥f∥Lp∥g∥Lq),
where 1 + 1

r
= 1

p
+ 1

q
.)

(Hint 2: Let ϕ(x) = exp(−|x|2/4). You may find it useful to show by induction that for any
multi-index α there exists a polynomial P (x) (whose exact form isn’t important)

Dα(ϕ(x/
√
t)) =

1

t|α|/2
P (x/

√
t)ϕ(x/

√
t).

You may also find it useful to show that for any polynomial P (y), there is a constant C such
that

|P (y)ϕ(y)| ≤ Cϕ(y/2).

)

Solution: Recall the solution to the heat equation can be given by

u(x) =
1

(4πt)n/2

∫
Rn

ϕ((x− y)/
√
t)f(y)dy.

Following the hint, we first claim that

Dα(ϕ(x/
√
t)) =

1

t|α|/2
P (x/

√
t)ϕ(x/

√
t) ≤ C

t|α|/2
ϕ(x/2

√
t).

Note the second inequality above follows immediately from the fact that P (x)ϕ(x) ≤ C for
some constant C and therefore splitting the exponential

P (x)ϕ(x) = P (x)ϕ(x/2)ϕ(x/2) ≤ Cϕ(x/2).

The rest of the claim follows by induction, namely if we assume the formula holds for some
multiindex α, then for some other multiindex α′ = γ+α with |γ| = 1 and Dγ = ∂xk

, we find
that

Dα′
ϕ(x/

√
t) =

1

|t||α|/2
Dγ(P (x/

√
t)ϕ(x/

√
t))

=
1

|t||α|/2+1/2

(
∂xk

P (x/
√
t) +

2xk√
t
P (x/

√
t)

)
ϕ(x/

√
t)
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since P ′(x) = ∂xk
P (x) + 2xP (x) is another polynomial, this proves the claim.

Using the claim, we find

|Dαu(x)| ≤ 1

(4πt)n/2

∫
Rn

|Dα(ϕ((x− y)/
√
t))||f(y)|dy

≤ C
1

tn/2+|α|/2

∫
Rn

ϕ((x− y)/2
√
t)|f(y)|dy.

Applying Young’s inequality∥∥∥∥∫
Rn

ϕ((· − y)/2
√
t)|f(y)|dy

∥∥∥∥
Lr

≤ ∥ϕ(·/2
√
t)∥Lq∥f∥Lp

where 1
q
= 1 + 1

r
− 1

p
. We see by change of variables that

∥ϕ(·/2
√
t)∥Lq ≤ Ctn/2q = Ct

n
2
−n

2 (
1
p
− 1

q ),

where the contant is just a Gaussian integral

C =

(∫
Rn

e−q|x|2/4dx

)1/q

< ∞.

Therefore putting everything together

∥Dαu∥Lr ≤ C

t
|α|
2
+n

2 (
1
p
− 1

r )
∥f∥Lp .

Problem 5 (Wave Energy): Use an energy method to show that there is at most one
smooth solution to the equation

utt + cut − uxx = f

in the domain (0, 1) × (0,∞) with initial conditions u(x, 0) = g(x), ut(x, 0) = h(x) and
boundary conditions u(0, t) = u(1, t) = 0. (Hint: there are different energies for c > 0 and
c < 0)

Solution: We begin by assuming two solutions u, v exist and define w = u − v. Therefore
w solves the following problem

wtt + cwt − wxx = 0 in (0, 1)× (0,∞)

w = 0, wt = 0 at (0, 1)× {t = 0}
w = w = 0 on {x = 0, 1} × (0,∞)

We start by assuming that c ≥ 0 and use the energy method. We consider the following
integral ∫ 1

0

(wtt + cwt − wxx)wtdx = 0
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Using integration by parts on the last term, we obtain∫ 1

0

1

2
(wt)

2
t +

1

2
(wx)

2
t + cw2

t dx+ wxwt

∣∣∣∣1
0

= 0 (1)

The boundary terms vanish, since w(0, t) = w(1, t) = 0 and hence wt(0, t) = wt(1, t) = 0.
Define the energy of the PDE to be

e(t) =
1

2

∫ 1

0

w2
t + w2

xdx

we note that equation (1) implies that

e(t)′ = −
∫ 1

0

cw2
t dx

and therefore e(t)′ ≤ 0, since c ≥ 0. This gives us that

0 ≤ e(t) ≤ e(0) =
1

2

∫ 1

0

wt(x, 0)
2 + wx(x, 0)

2dx = 0,

since w(x, 0), wx(x, 0) are both 0. Therefore e(t) = 0 and so wt = wx = 0. It follows that
w = 0 in (0, 1)× (0,∞) since w(x, 0) = w(0, t) = 0 for all (x, t) ∈ (0, 1)× (0,∞), and hence
we have uniqueness for c ≥ 0.

We now consider the case when c < 0. Following the steps from before, we obtain∫ 1

0

1

2
(wt)

2
t +

1

2
(wx)

2
t + cw2

t dx = 0.

Denoting

η(t) =
1

2

∫ 1

0

w2
t dx ,

1

2
β(t) =

∫ 1

0

w2
xdx

we can write this equation as
η′ + 2cη + β′ = 0.

which is just an ODE in η, with η(0) = 0. Multiplying through by the integration factor
e2ct, we obtain

(e2ctη)′ + e2ctβ′ = 0

which can be integrated to give

η(t) = −
∫ t

0

e−2c(t−s)β′(s)ds.

Now an integration by parts in the integral gives

η(t) = −β(t) + 2c

∫ t

0

e−2c(t−s)β(s)ds (2)
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where we have used the fact that β(0) = 0. This suggests that we want an energy of the
form

e(t) =
1

2

∫ 1

0

[
w2

t + w2
x − 2c

∫ t

0

e−2c(t−s)wx(x, s)
2ds

]
dx.

We know from equation (2) that e(t) = 0. Therefore since c < 0, this implies that wt =
wx = 0 in (0, 1)× (0,∞), and so by the boundary conditions, w = 0 in (0, 1)× (0,∞). Hence
we have uniqueness for c < 0. ■

Problem 6 (Wave decay): Let u be a C2 solution of utt −∆u = 0 in R2 × (0,∞), with

u(x, 0) = 0 and ut(x, 0) = g(x), x ∈ R2

where g is a smooth function satisfying g(x) = 0 for |x| > a.

(a) Show that there exists a constant C such that |u(x, t)| ≤ C
t
for t ≥ 2(|x|+ a)

(b) Show that limt→∞ tu(x, t) = 1
2π

∫
R2 g(y)dy for all x ∈ R2.

Solution:

(a) Consider Poisson’s formula for the solution to wave equation IVP,

u(x, t) =
1

2π

∫
B(x,t)

g(y)

(t2 − |y − x|2)1/2
dy.

Since g(x) = 0 for |x| > a, we only need to consider the integration over B(0, a) ∩
B(x, t). However, under the assumption that t ≥ 2(|x|+ a), B(0, a) ⊆ B(x, r). There-
fore we consider the integral only over B(0, a)

u(x, t) =
1

2πt

∫
B(0,a)

g(y)

(1− (|y − x|/t)2)1/2
dy.

Moreover, whenever y ∈ B(0, a) and t ≥ 2(|x|+ a),

|y − x|
t

≤ |x|+ a

t
≤ 1

2
.

Therefore we may apply the following bound to u(x, t)

|u(x, t)| ≤ 1

2πt

∫
B(0,a)

|g(y)|
(1− (|y − x|/t)2)1/2

dy

≤ ||g||∞
2πt

∫
B(0,a)

1

(1− (1/2)2)1/2
dy

≤ ||g||∞
2πt

2√
3
πa2 =

||g||∞a2√
3

1

t
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(b) Fix x ∈ R2 and consider u(x, t) given by Poisson formula, then

tu(x, t) =
1

2π

∫
B(x,t)

g(y)

(1− (|y − x|/t)2)1/2
dy

If t > 2(|x|+ a), then we can consider the integral over B(0, a) since g(y) = 0 outside
of B(0, a) and B(0, a) ⊆ B(x, t). Moreover

g(y)

(1− (|y − x|/t)2)1/2

is bounded in B(0, a). Therefore,

lim
t→∞

tu(x, t) = lim
t→∞

1

2π

∫
B(0,a)

g(y)

(1− (|y − x|/t)2)1/2
dy

=
1

2π

∫
B(0,a)

lim
t→∞

g(y)

(1− (|y − x|/t)2)1/2
dy

=
1

2π

∫
B(0,a)

g(y)dy =
1

2π

∫
R2

g(y)dy

■
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