Take-Home Exam - Solutions

Problem 1 (Continuous Dependence): Let U € R" be a bounded domain. Consider
the Dirichlet boundary value problem

—Au=f in U
u=yg on OU.

Assume f can be continuosly extended to QU (i.e. it is uniformly continuous).

(a) Show that the solution u has continuous dependence in C(U) on the boundary data

g € C(0U) and the source term f € C(U). Assume that a solution u always exists.

Namely, show that if g, — g in C(9U) and f,, — f in C(U) that the solution u,, — u

in C(U).

(b) Show that the solution has continuous dependence in C*(U) on the boundary data
g € C*(QU) and the source term f € C*(U) for any k > 1 (again assume f and its
first k derivatives can be continuously extended to U).

Solution:

(a) We follow one of the proofs in the homework (repeated here for convenience). Namely
let v = u — Alz|?, we know that

“Av=f -2 <0

if A =|fllcw)/2n. Therefore v = u — A|z|? is a subsolution and so by the maximum
principle and the fact that v < g on U, we find max;v < maxgy g. This implies that

max u < max g + HJcnﬂmin |z|?.
T oU 2n U

Applying the same argument to —u gives

max —u < max —¢g +

! 1 HfHZ(U) min |z

Putting these together gives the estimate
lulle@y < CUlfle@) + l9llcen)),
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where the constant C' doesn’t depend on u. Now let f, — f in C(U) and g, — ¢ in
C(0U), then by linearity we have that the associated solutions w,, and u satisfy

lu = wllo@ < CUSf = fulle@) + Il9n — glle@))-
Sending n — oo gives the result.

(b) To get C*, just take the derivative of the equation and apply the same argument to
D for |a| = k.

Problem 2 (Greens Function): Let U C R™ have C'!' boundary (but is not necessarily
bounded). Recall, the Neumann boundary value problem takes the form

{Au:() in U

%:f on OU,

for some function f € C(9U) with [ fdS(y) = 0, where v denotes the outward facing normal
to OU. Note that |, o fdS(y) is necessary since by the divergence theorem

[ st = | auast) - / Audy =0

ouU
(a) (Extra Credit) We seek a Green’s function G/(z,y) that can express a solution u €
C?*(U) as
ww) =+ [ Glanrws)
U

where f is assumed to have compact support on 9U, [, o fdS(y) = 0 and cis a constant
that depends on u. Give a formula for the Green’s function in terms of a corrector
¢”(y) that is chosen to satisfy a particular BVP. (Hint, you may take for granted the
formula we proved in class

uz)= | 9@ =yuly) = duly)®lr —y)dS(y),
U
where ® is the fundamental solution.)

(b) Consider the Neumann problem in the upper half-plane R3 = {z = (21,2,) € R? :
To > 0},

Uz, =f  on {xe =0}
Find the corresponding Green’s function and show that

r,az) = o= [ Il =) +a3] £ o

™

{Au:o in R

is a solution.



Solution:

()

We will seek a corrector ¢”(y) that solves the following problem

A¢®(y) =0 in U
0,¢0"(y) = 0,®(x —y) — h(y) on OU

for some function h(y) on OU with [, hdz = 1. Note we must include the extra
function h in the boundary condition since the Neumann problem must have mean
zero boundary condition by the divergence theorem

OZ/UAWdy:/aUc‘?VW(y)dS(y)

Since we know that (at least for bounded U) [,,; 0,®(x—y)dS = [, A,®(z—y)dy = 1,
this means that faU hdS = 1. Applying Green’s formula, ¢*(y) satisfies

" (y)0,u(y)dS(y) = | 9P(z — y)uly) — h(y)u(y)dS(y) = 0.
oU oU

Defining the Green’s function G(z,y) = —®(z—y)+¢¥(z) and using that d,u(y) = f(y)
on OU we can combine this with the formula proved in class

u(r) = . 9,®(z — y)u(y) — dyu(y)®(z — y)dS(y)

to obtain

ulz) = /8 Hu()dS() + / G, y)F(y)dS(y).

ou
Defining ¢ = [, h(y)u(y)dS(y) gives the formula.

Lets use the corrector approach to solve the Neumann problem in ]Ri

Ugy = f on {zy = 0}.

Note, the problem above is stated in terms of the inward normal u,, = —0,u = f, so we
must carry around the minus sign. To find the solution, we must solve the corrector
problem we posed in part a). To do this, we use a reflection principle. Namely let
T = (x1, —2) and define

{Au:O in R2

¢ (y) = —P(y — ) = —ﬁ In((y1 — 21)° + (y2 + 22)?).

Note that clearly A¢”(y) = 0 since we moved the singularity away from the inside of
R? . Moreover

-1 T2

0y, &° —0=—

= 81/2(1)(9 - I)|y2:0‘
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Note that we don’t need the h here since U is unbounded. It follows that the Green’s
function is

G(r,y) = —®(z —y) — P(y — T).

This gives the formula (keeping in mind J,, is the inward facing normal derivative)

1
o

u(z) /R n (g1 — @1)? + 22) F(y1)dys.

Now lets justify that this formula actually satisfies the Neumann problem. We will
assume that f is continuous with compact support. To show this, we note first that
for each y and (z1,22) € R, Aln((y — 21)* + 23) = 0 since we are away from the
singularity at x5 = 0. Therefore, if we are in the regime where f has compact support,
then we can pull the Laplacian inside the integral and conclude that

Au(zy,19) = % /R Aln ((y —21)* + z3) f(y)dy = 0.

To see the boundary condition is met, we note that

X2

1
(o) =+ | i)y

1 T 1/ 1
- dy == dy =1,
w/uuy—xl)ux% Yo a1

u(ar.a2) = f(o)] < = [ T ) = )y

— _/Rﬁ\f(:cgyan) — f(21)|dy

Since

we have

™

where we changed variables to obtain the last line. If f is assumed to be continuous, we
note that lim,, .o+ f(22y + 1) = f(x1) for each y. Therefore since f is also bounded
and ﬁ is integrable we can use dominated convergence to conclude that

. 1 1
lim —/Ry2+1|f($zy+$1)—f($1)|dy:0

and therefore lim,, ,o+ Oy, u(x, 22) = f(21).
Problem 3 (Soap bubble). Let U be a bounded domain in R" with C' boundary and let

¢ be a smooth function on U satisfying o|sr < 0. Define the constraint set

Ay, ={u e C*(U) : uloy =0, u>pon U}



and the surface energy of u
1
] = -/ | Du(z)Pdz.
2 Ju

We seek to minimize the surface energy I[u] over all functions u € A, constrained to lie
above . Physically, we can view the minimizer as the shape of a “soap bubble” attached to
the boundary U and stretched over the obstacle ¢. The soap bubble will try to minimize
its energy as best it can subject to constraint imposed by the “obstacle”.

Show that if such a minimizer exists, i.e. if there is a u, € A, such that

Iu,) = min{I[u] : uwe A,},

then u, is harmonic on the open set V,, := {z € U : u* > ¢}, namely u, is harmonic wherever
it doesn’t touch . (Hint: for each test function ¢ compactly supported in {u, > ¢}, show
that you can find and interval (-4, ) of 0, depending on ¢ such that u, + 7¢ > ¢ for all
T € (—6,0).)

Solution: Let u, be a minimizer, I{u,] = min{/[u] : v € A,}, and fix ¢ € C*(U) with
supp ¢ C V,,. We want to show that u* + 7¢ still belongs to the constraint set A, for 7 in a
suitably small neighborhood (-4, d) of 0.

To show this, assume that ¢ # 0 (otherwise we are done) and define for each n > 1 the

open set
Vi={zeU:u >p+1/n}.

Clearly we have V,, = J;Z, V' and therefore {V'}>, is an open cover of supp ¢. Moreover
since V)1 C V' for ny < na, we see that since supp ¢ is compact, there exists an Ny such

that supp ¢ C V¢N¢. With this in hand, it is clear that
ut+TH> @

as long as |7| < . It follows that for such 7, u* + 7¢ € A,. Therefore the function

1
Nyll¢ll oo
ilr] = u. + 79 = / | Du,, | dz + 27'/ Du, - Dpdz + 7'2/ |D¢|? da
U U U
is C'(—4,d) and has a minimum at 7 = 0. Necessarily we must have ¢/(7)|,—o = 0, and so
/ Du, - Dodx = 0.
U
Integrating by parts and using that ¢ has compact support gives

/ Au,pdr = 0.
U

Since this holds for each ¢ € C*(U) with supp V,, = {u* > ¢}, we conclude that Au, =0
on V.



Problem 4 (Regularization and decay): Let u be the solution of Cauchy problem for
the heat equation on R™

u—Au=0 in R"™ x (0, 00)
u=f on R"x {t=0}.

where f € C°(R") N LP(R") for some p € [1, 00].Show that for each r > p and multi-index
a, there exist a constant C' > 0 (independent of u) such that

Q

[1D%u(, )] e <

«@
4155 (

[l

l l
P 'r

(Hint 1: You may want to use Young’s convolution inequality || f * gllo- < |fllzellgllze),
Where1+%:%+%.)

(Hint 2: Let ¢(z) = exp(—|z|*/4). You may find it useful to show by induction that for any
multi-index « there exists a polynomial P(x) (whose exact form isn’t important)

D(¢w/ V) = o Pla/VHo(a/ V).

tlal/2 |/2

You may also find it useful to show that for any polynomial P(y), there is a constant C' such
that

|P(y)é(y)| < Coly/2).
)

Solution: Recall the solution to the heat equation can be given by

1
(47Tt)n/2 R

u(r) = o((x —y)/V) f(y)dy

Following the hint, we first claim that

D(¢(w/ V1) = o Pla/Ve(a/Vi) <

Note the second inequality above follows immediately from the fact that P(x)¢(z) < C for
some constant C' and therefore splitting the exponential

Plx)(x) = P(x)p(x/2)¢(x/2) < Ch(x/2).

The rest of the claim follows by induction, namely if we assume the formula holds for some
multiindex «, then for some other multiindex o/ = v+ « with |y| = 1 and DY = 0,, , we find

that
“o(x/VE) =

o(z/2V1).

t\ I/2 = t\ |/2

D(P(z/vVt)o(x/ V1))

|t||oz|/2

1
— s (0P @V + 2PV ol Vi
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since P'(z) = 0,, P(x) + 2z P(x) is another polynomial, this proves the claim.
Using the claim, we find

D) < s [ 1D =) VD))
< Corri [ ola = 0)/2VDI W)l

Applying Young’s inequality

. o((- = y)/2V1)|f ()l dy

= lo(-/2VD) | zall £l 2o

L

where % =1+ % — %. We see by change of variables that

l6(-/2vD) |10 < Ot = ctE 5 (G73),

where the contant is just a Gaussian integral

) 1/q
C= (/ el /4d:c) < Q.

Therefore putting everything together

C
Hl)au”lfS o]\ n
t7+§(

ey 1f 1]z

hSA

Problem 5 (Wave Energy): Use an energy method to show that there is at most one
smooth solution to the equation

U + CUt — Ugy = |

in the domain (0,1) x (0,00) with initial conditions u(z,0) = g(x), u,(x,0) = h(z) and
boundary conditions u(0,t) = u(1,¢) = 0. (Hint: there are different energies for ¢ > 0 and
c<0)

Solution: We begin by assuming two solutions u, v exist and define w = u — v. Therefore
w solves the following problem

Wy + CWg — Wy = 0 in (0,1) x (0,00)
w=0,w=0 at (0,1) x {t =0}
w=w=0 on {z =0,1} x (0,00)

We start by assuming that ¢ > 0 and use the energy method. We consider the following
integral

1
/ (wy + cwy — Wy )wypdx =0
0
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Using integration by parts on the last term, we obtain

o (1)

0

1
1 1
/ §(wt)? + §(wm)? + cw?dr + wyw;
0

The boundary terms vanish, since w(0,t) = w(1,t) = 0 and hence w;(0,t) = w(1,t) = 0.
Define the energy of the PDE to be

1 1
e(t) = 5/0 w; + widx

we note that equation (1) implies that

1
e(t) = —/ cwldr
0

and therefore e(t)’ <0, since ¢ > 0. This gives us that

1
0 <e(t) <e(0) = 5/ wy(z,0)? + wy(z,0)*dr = 0,
0

since w(z,0), w,(z,0) are both 0. Therefore e(t) = 0 and so w; = w, = 0. It follows that
w=01in (0,1) x (0,00) since w(x,0) = w(0,t) = 0 for all (z,t) € (0,1) x (0,00), and hence
we have uniqueness for ¢ > 0.

We now consider the case when ¢ < 0. Following the steps from before, we obtain

1
1 1
/0 §(wt)t2 + §(wm)f + cwidr = 0.

Denoting

1 [t 1 !
o) =5 [ utde 500 = [ wids
2 /o 2 0

we can write this equation as
n' +2cn+ 3 =0.

which is just an ODE in 5, with n(0) = 0. Multiplying through by the integration factor

e?? we obtain

(6207577)/ + GQCt/B, =0

which can be integrated to give

Now an integration by parts in the integral gives

o) = 50+ 2c | -9 ) )
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where we have used the fact that 5(0) = 0. This suggests that we want an energy of the
form

1

1 t
e(t) = 5/ {wf +w? — 20/ e 2=y, (x, 5)%ds| d.
0 0

We know from equation (2) that e(t) = 0. Therefore since ¢ < 0, this implies that w; =
w, = 01in (0,1) x (0,00), and so by the boundary conditions, w = 0 in (0,1) x (0, 00). Hence
we have uniqueness for ¢ < 0. |

Problem 6 (Wave decay): Let u be a C? solution of u; — Au = 0 in R? x (0, 00), with
u(z,0) =0 and wu(r,0) =g(r), x€R?
where g is a smooth function satisfying g(z) = 0 for |z| > a.
(a) Show that there exists a constant C' such that |u(z,t)] < < for ¢ > 2(|z| + a)
(b) Show that limy_,o tu(z,t) = 5= [4s g(y)dy for all z € R2.
Solution:

(a) Consider Poisson’s formula for the solution to wave equation IVP,

1 q(y)
t) = — dy.
wet) = o /B@,t) @y — Py

Since g(x) = 0 for |z| > a, we only need to consider the integration over B(0,a) N
B(z,t). However, under the assumption that ¢t > 2(|z| +a), B(0,a) C B(x,r). There-
fore we consider the integral only over B(0, )

_ b 9(y)
unt) = o /Bm,a) 0y - «ljpE

Moreover, whenever y € B(0,a) and t > 2(|z| + a),

y—a| _ o] +a
t - t

1
< —.
-2
Therefore we may apply the following bound to u(z,t)

1 l9(y)] J

uz, )] < 5
2t Jpo,0) (1= (ly — 2|/)*)'/?

ol / L
= ont S (- (172207




(b) Fix x € R? and consider u(z,t) given by Poisson formula, then

1 9(y)
fulw.1) = o /B@,t) Ay — cljp2?

If t > 2(|x| + @), then we can consider the integral over B(0,a) since ¢g(y) = 0 outside
of B(0,a) and B(0,a) C B(x,t). Moreover

9(y)
(1 —(ly —x[/t)?)1/?

is bounded in B(0,a). Therefore,

. 1 9(y)
lim tu(z.t) = lim — d
i tule. 1) = Jim o7 /B@,a) =y - )2
1 . 9(y)
21 J o,y oo (1 = (ly — z|/1)%)1/2
1 1
= — gw)dy = — | g(y)dy
277' B(O,a) ( ) 27T R2 ( )
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