Take-Home Exam - Solutions

Problem 1 (Continuous Dependence): Let $U \in \mathbb{R}^n$ be a bounded domain. Consider the Dirichlet boundary value problem

$$\begin{cases} -\Delta u = f & \text{in } U \\ u = g & \text{on } \partial U \end{cases}$$

Assume f can be continuously extended to ∂U (i.e. it is uniformly continuous).

- (a) Show that the solution u has continuous dependence in $C(\overline{U})$ on the boundary data $g \in C(\partial U)$ and the source term $f \in C(\overline{U})$. Assume that a solution u always exists. Namely, show that if $g_n \to g$ in $C(\partial U)$ and $f_n \to f$ in $C(\overline{U})$ that the solution $u_n \to u$ in $C(\overline{U})$.
- (b) Show that the solution has continuous dependence in $C^k(\overline{U})$ on the boundary data $g \in C^k(\partial U)$ and the source term $f \in C^k(\overline{U})$ for any $k \ge 1$ (again assume f and its first k derivatives can be continuously extended to \overline{U}).

Solution:

(a) We follow one of the proofs in the homework (repeated here for convenience). Namely let $v = u - \lambda |x|^2$, we know that

$$-\Delta v = f - \lambda 2n \le 0$$

if $\lambda = ||f||_{C(U)}/2n$. Therefore $v = u - \lambda |x|^2$ is a subsolution and so by the maximum principle and the fact that $v \leq g$ on ∂U , we find $\max_{\overline{U}} v \leq \max_{\partial U} g$. This implies that

$$\max_{\overline{U}} u \le \max_{\partial U} g + \frac{\|f\|_{C(U)}}{2n} \min_{U} |x|^2.$$

Applying the same argument to -u gives

$$\max_{\overline{U}} -u \le \max_{\partial U} -g + \frac{\|f\|_{C(U)}}{2n} \min_{U} |x|^2.$$

Putting these together gives the estimate

$$\|u\|_{C(\overline{U})} \le C(\|f\|_{C(\overline{U})} + \|g\|_{C(\partial U)}),$$

where the constant C doesn't depend on u. Now let $f_n \to f$ in C(U) and $g_n \to g$ in $C(\partial U)$, then by linearity we have that the associated solutions u_n and u satisfy

$$||u - u_n||_{C(\overline{U})} \le C(||f - f_n||_{C(\overline{U})} + ||g_n - g||_{C(\partial U)})$$

Sending $n \to \infty$ gives the result.

(b) To get C^k , just take the derivative of the equation and apply the same argument to $D^{\alpha}u$ for $|\alpha| = k$.

Problem 2 (Greens Function): Let $U \subseteq \mathbb{R}^n$ have C^1 boundary (but is not necessarily bounded). Recall, the Neumann boundary value problem takes the form

$$\begin{cases} \Delta u = 0 & \text{in } U \\ \frac{\partial u}{\partial \nu} = f & \text{on } \partial U, \end{cases}$$

for some function $f \in C(\partial U)$ with $\int f dS(y) = 0$, where ν denotes the outward facing normal to ∂U . Note that $\int_{\partial U} f dS(y)$ is necessary since by the divergence theorem

$$\int_{\partial U} f(y) \mathrm{d}S(y) = \int_{\partial U} \partial_{\nu} u(y) \mathrm{d}S(y) = \int_{U} \Delta u \,\mathrm{d}y = 0$$

(a) (Extra Credit) We seek a Green's function G(x, y) that can express a solution $u \in C^2(\overline{U})$ as

$$u(x) = c + \int_{\partial U} G(x, y) f(y) \mathrm{d}S(y),$$

where f is assumed to have compact support on ∂U , $\int_{\partial U} f dS(y) = 0$ and c is a constant that depends on u. Give a formula for the Green's function in terms of a corrector $\phi^x(y)$ that is chosen to satisfy a particular BVP. (Hint, you may take for granted the formula we proved in class

$$u(x) = \int_{\partial U} \partial_{\nu} \Phi(x - y) u(y) - \partial_{\nu} u(y) \Phi(x - y) \mathrm{d}S(y),$$

where Φ is the fundamental solution.)

(b) Consider the Neumann problem in the upper half-plane $\mathbb{R}^2_+ = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_2 > 0\},\$

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^2_+ \\ u_{x_2} = f & \text{on } \{x_2 = 0\} \end{cases}$$

Find the corresponding Green's function and show that

$$u(x_1, x_2) = \frac{1}{2\pi} \int_{\mathbb{R}} \ln[(x_1 - y)^2 + x_2^2] f(y) \, \mathrm{d}y.$$

is a solution.

Solution:

(a) We will seek a corrector $\phi^x(y)$ that solves the following problem

$$\begin{cases} \Delta \phi^x(y) = 0 & \text{in } U\\ \partial_\nu \phi^x(y) = \partial_\nu \Phi(x-y) - h(y) & \text{on } \partial U \end{cases}$$

for some function h(y) on ∂U with $\int_{\partial U} h dx = 1$. Note we must include the extra function h in the boundary condition since the Neumann problem must have mean zero boundary condition by the divergence theorem

$$0 = \int_{U} \Delta \phi^{x} \mathrm{d}y = \int_{\partial U} \partial_{\nu} \phi^{x}(y) \mathrm{d}S(y).$$

Since we know that (at least for bounded U) $\int_{\partial U} \partial_{\nu} \Phi(x-y) dS = \int_U \Delta_y \Phi(x-y) dy = 1$, this means that $\int_{\partial U} h dS = 1$. Applying Green's formula, $\phi^x(y)$ satisfies

$$\int_{\partial U} \phi^x(y) \partial_\nu u(y) \mathrm{d}S(y) = \int_{\partial U} \partial_\nu \Phi(x-y) u(y) - h(y) u(y) \mathrm{d}S(y) = 0.$$

Defining the Green's function $G(x, y) = -\Phi(x-y) + \phi^y(x)$ and using that $\partial_{\nu} u(y) = f(y)$ on ∂U we can combine this with the formula proved in class

$$u(x) = \int_{\partial U} \partial_{\nu} \Phi(x - y) u(y) - \partial_{\nu} u(y) \Phi(x - y) dS(y)$$

to obtain

Defining $c = \int_{\partial U} h(y) u(y) dS(y)$ gives the formula.

(b) Lets use the corrector approach to solve the Neumann problem in \mathbb{R}^2_+

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^2_+ \\ u_{x_2} = f & \text{on } \{x_2 = 0\}. \end{cases}$$

Note, the problem above is stated in terms of the inward normal $u_{x_2} = -\partial_{\nu}u = f$, so we must carry around the minus sign. To find the solution, we must solve the corrector problem we posed in part a). To do this, we use a reflection principle. Namely let $\tilde{x} = (x_1, -x_2)$ and define

$$\phi^{x}(y) = -\Phi(y - \tilde{x}) = -\frac{1}{4\pi} \ln((y_{1} - x_{1})^{2} + (y_{2} + x_{2})^{2})$$

Note that clearly $\Delta \phi^x(y) = 0$ since we moved the singularity away from the inside of \mathbb{R}^2_+ . Moreover

$$\partial_{y_2}\phi^x(y)|_{y_2=0} = \frac{-1}{2\pi} \frac{x_2}{(y_1 - x_1)^2 + x_2^2} = \partial_{y_2}\Phi(y - x)|_{y_2=0}.$$

Note that we don't need the h here since U is unbounded. It follows that the Green's function is

$$G(x,y) = -\Phi(x-y) - \Phi(y-\tilde{x}).$$

This gives the formula (keeping in mind ∂_{y_2} is the inward facing normal derivative)

$$u(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \ln\left((y_1 - x_1)^2 + x_2^2\right) f(y_1) dy_1.$$

Now lets justify that this formula actually satisfies the Neumann problem. We will assume that f is continuous with compact support. To show this, we note first that for each y and $(x_1, x_2) \in \mathbb{R}^2_+$, $\Delta \ln ((y - x_1)^2 + x_2^2) = 0$ since we are away from the singularity at $x_2 = 0$. Therefore, if we are in the regime where f has compact support, then we can pull the Laplacian inside the integral and conclude that

$$\Delta u(x_1, x_2) = \frac{1}{2\pi} \int_{\mathbb{R}} \Delta \ln \left((y - x_1)^2 + x_2^2 \right) f(y) dy = 0.$$

To see the boundary condition is met, we note that

$$\partial_{x_2} u(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{x_2}{(y - x_1)^2 + x_2^2} f(y) dy$$

Since

$$\frac{1}{\pi} \int_{\mathbb{R}} \frac{x_2}{(y-x_1)^2 + x_2^2} dy = \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{y^2 + 1} dy = 1,$$

we have

$$\begin{aligned} |\partial_{x_2} u(x_1, x_2) - f(x_1)| &\leq \frac{1}{\pi} \int_{\mathbb{R}} \frac{x_2}{(y - x_1)^2 + x_2^2} |f(y) - f(x_1)| \mathrm{d}y \\ &= \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{y^2 + 1} |f(x_2y + x_1) - f(x_1)| \mathrm{d}y \end{aligned}$$

where we changed variables to obtain the last line. If f is assumed to be continuous, we note that $\lim_{x_2\to 0^+} f(x_2y + x_1) = f(x_1)$ for each y. Therefore since f is also bounded and $\frac{1}{1+y^2}$ is integrable we can use dominated convergence to conclude that

$$\lim_{x_2 \to 0^+} \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{y^2 + 1} |f(x_2y + x_1) - f(x_1)| \mathrm{d}y = 0$$

and therefore $\lim_{x_2\to 0^+} \partial_{x_2} u(x_1, x_2) = f(x_1)$.

Problem 3 (Soap bubble). Let U be a bounded domain in \mathbb{R}^n with C^1 boundary and let φ be a smooth function on \overline{U} satisfying $\varphi|_{\partial U} < 0$. Define the constraint set

$$\mathcal{A}_{\varphi} := \{ u \in C^2(\overline{U}) : u|_{\partial U} = 0, \ u \ge \varphi \text{ on } \overline{U} \}$$

and the surface energy of u

$$I[u] := \frac{1}{2} \int_U |Du(x)|^2 \mathrm{d}x.$$

We seek to minimize the surface energy I[u] over all functions $u \in \mathcal{A}_{\varphi}$ constrained to lie above φ . Physically, we can view the minimizer as the shape of a "soap bubble" attached to the boundary ∂U and stretched over the obstacle φ . The soap bubble will try to minimize its energy as best it can subject to constraint imposed by the "obstacle".

Show that if such a minimizer exists, i.e. if there is a $u_* \in \mathcal{A}_{\varphi}$ such that

$$I[u_*] = \min\{I[u] : u \in \mathcal{A}_{\varphi}\},\$$

then u_* is harmonic on the open set $V_{\varphi} := \{x \in U : u^* > \varphi\}$, namely u_* is harmonic wherever it doesn't touch φ . (Hint: for each test function ϕ compactly supported in $\{u_* > \varphi\}$, show that you can find and interval $(-\delta, \delta)$ of 0, depending on ϕ such that $u_* + \tau \phi > \varphi$ for all $\tau \in (-\delta, \delta)$.)

Solution: Let u_* be a minimizer, $I[u_*] = \min\{I[u] : u \in \mathcal{A}_{\varphi}\}$, and fix $\phi \in C_c^{\infty}(U)$ with $\operatorname{supp} \phi \subseteq V_{\varphi}$. We want to show that $u^* + \tau \phi$ still belongs to the constraint set \mathcal{A}_{φ} for τ in a suitably small neighborhood $(-\delta, \delta)$ of 0.

To show this, assume that $\phi \neq 0$ (otherwise we are done) and define for each $n \geq 1$ the open set

$$V_{\varphi}^{n} = \{x \in U : u^{*} > \varphi + 1/n\}.$$

Clearly we have $V_{\varphi} = \bigcup_{n=1}^{\infty} V_{\varphi}^n$ and therefore $\{V_{\varphi}^n\}_{n=1}^{\infty}$ is an open cover of supp ϕ . Moreover since $V_{\varphi}^{n_1} \subseteq V_{\varphi}^{n_2}$ for $n_1 \leq n_2$, we see that since supp ϕ is compact, there exists an N_{ϕ} such that supp $\phi \subset V_{\varphi}^{N_{\phi}}$. With this in hand, it is clear that

$$u^* + \tau \phi \ge \varphi$$

as long as $|\tau| \leq \frac{1}{N_{\phi} \|\phi\|_{L^{\infty}}}$. It follows that for such τ , $u^* + \tau \phi \in \mathcal{A}_{\varphi}$. Therefore the function

$$i[\tau] = I[u_* + \tau\phi] = \int_U |Du_*|^2 \,\mathrm{d}x + 2\tau \int_U Du_* \cdot D\phi \,\mathrm{d}x + \tau^2 \int_U |D\phi|^2 \,\mathrm{d}x$$

is $C^1(-\delta, \delta)$ and has a minimum at $\tau = 0$. Necessarily we must have $i'(\tau)|_{\tau=0} = 0$, and so

$$\int_U Du_* \cdot D\phi \,\mathrm{d}x = 0.$$

Integrating by parts and using that ϕ has compact support gives

$$\int_{U} \Delta u_* \phi \, \mathrm{d}x = 0.$$

Since this holds for each $\phi \in C_c^{\infty}(U)$ with $\operatorname{supp} V_{\varphi} = \{u^* > \varphi\}$, we conclude that $\Delta u_* = 0$ on V_{φ} .

Problem 4 (Regularization and decay): Let u be the solution of Cauchy problem for the heat equation on \mathbb{R}^n

$$\begin{cases} u_t - \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = f & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

where $f \in C^{\infty}(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$ for some $p \in [1, \infty]$. Show that for each $r \ge p$ and multi-index α , there exist a constant $C \ge 0$ (independent of u) such that

$$\|D^{\alpha}u(\cdot,t)\|_{L^{r}} \leq \frac{C}{t^{\frac{|\alpha|}{2} + \frac{n}{2}(\frac{1}{p} - \frac{1}{r})}} \|f\|_{L^{p}}$$

(Hint 1: You may want to use Young's convolution inequality $||f \star g||_{L^r} \leq ||f||_{L^p} ||g||_{L^q}$), where $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$.)

(Hint 2: Let $\phi(x) = \exp(-|x|^2/4)$). You may find it useful to show by induction that for any multi-index α there exists a polynomial P(x) (whose exact form isn't important)

$$D^{\alpha}(\phi(x/\sqrt{t})) = \frac{1}{t^{|\alpha|/2}} P(x/\sqrt{t})\phi(x/\sqrt{t}).$$

You may also find it useful to show that for any polynomial P(y), there is a constant C such that

$$|P(y)\phi(y)| \le C\phi(y/2).$$

)

Solution: Recall the solution to the heat equation can be given by

$$u(x) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} \phi((x-y)/\sqrt{t}) f(y) dy.$$

Following the hint, we first claim that

$$D^{\alpha}(\phi(x/\sqrt{t})) = \frac{1}{t^{|\alpha|/2}} P(x/\sqrt{t})\phi(x/\sqrt{t}) \le \frac{C}{t^{|\alpha|/2}}\phi(x/2\sqrt{t}).$$

Note the second inequality above follows immediately from the fact that $P(x)\phi(x) \leq C$ for some constant C and therefore splitting the exponential

$$P(x)\phi(x) = P(x)\phi(x/2)\phi(x/2) \le C\phi(x/2).$$

The rest of the claim follows by induction, namely if we assume the formula holds for some multiindex α , then for some other multiindex $\alpha' = \gamma + \alpha$ with $|\gamma| = 1$ and $D^{\gamma} = \partial_{x_k}$, we find that

$$D^{\alpha'}\phi(x/\sqrt{t}) = \frac{1}{|t|^{|\alpha|/2}} D^{\gamma}(P(x/\sqrt{t})\phi(x/\sqrt{t}))$$

= $\frac{1}{|t|^{|\alpha|/2+1/2}} \left(\partial_{x_k} P(x/\sqrt{t}) + \frac{2x_k}{\sqrt{t}} P(x/\sqrt{t})\right) \phi(x/\sqrt{t})$

since $P'(x) = \partial_{x_k} P(x) + 2x P(x)$ is another polynomial, this proves the claim. Using the claim, we find

$$\begin{split} |D^{\alpha}u(x)| &\leq \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} |D^{\alpha}(\phi((x-y)/\sqrt{t}))| |f(y)| \mathrm{d}y \\ &\leq C \frac{1}{t^{n/2+|\alpha|/2}} \int_{\mathbb{R}^n} \phi((x-y)/2\sqrt{t}) |f(y)| \mathrm{d}y. \end{split}$$

Applying Young's inequality

$$\left\| \int_{\mathbb{R}^n} \phi((\cdot - y)/2\sqrt{t}) |f(y)| \mathrm{d}y \right\|_{L^r} \le \|\phi(\cdot/2\sqrt{t})\|_{L^q} \|f\|_{L^p}$$

where $\frac{1}{q} = 1 + \frac{1}{r} - \frac{1}{p}$. We see by change of variables that

$$\|\phi(\cdot/2\sqrt{t})\|_{L^q} \le Ct^{n/2q} = Ct^{\frac{n}{2} - \frac{n}{2}\left(\frac{1}{p} - \frac{1}{q}\right)},$$

where the contant is just a Gaussian integral

$$C = \left(\int_{\mathbb{R}^n} e^{-q|x|^2/4} \mathrm{d}x\right)^{1/q} < \infty.$$

Therefore putting everything together

$$||D^{\alpha}u||_{L^{r}} \leq \frac{C}{t^{\frac{|\alpha|}{2}+\frac{n}{2}\left(\frac{1}{p}-\frac{1}{r}\right)}}||f||_{L^{p}}.$$

Problem 5 (Wave Energy): Use an energy method to show that there is at most one smooth solution to the equation

$$u_{tt} + cu_t - u_{xx} = f$$

in the domain $(0,1) \times (0,\infty)$ with initial conditions u(x,0) = g(x), $u_t(x,0) = h(x)$ and boundary conditions u(0,t) = u(1,t) = 0. (Hint: there are different energies for c > 0 and c < 0)

Solution: We begin by assuming two solutions u, v exist and define w = u - v. Therefore w solves the following problem

$$\begin{cases} w_{tt} + cw_t - w_{xx} = 0 & \text{in } (0, 1) \times (0, \infty) \\ w = 0, w_t = 0 & \text{at } (0, 1) \times \{t = 0\} \\ w = w = 0 & \text{on } \{x = 0, 1\} \times (0, \infty) \end{cases}$$

We start by assuming that $c \geq 0$ and use the energy method. We consider the following integral

$$\int_0^1 (w_{tt} + cw_t - w_{xx})w_t dx = 0$$

Using integration by parts on the last term, we obtain

$$\int_{0}^{1} \frac{1}{2} (w_t)_t^2 + \frac{1}{2} (w_x)_t^2 + c w_t^2 dx + w_x w_t \Big|_{0}^{1} = 0$$
⁽¹⁾

The boundary terms vanish, since w(0,t) = w(1,t) = 0 and hence $w_t(0,t) = w_t(1,t) = 0$. Define the energy of the PDE to be

$$e(t) = \frac{1}{2} \int_0^1 w_t^2 + w_x^2 dx$$

we note that equation (1) implies that

$$e(t)' = -\int_0^1 cw_t^2 dx$$

and therefore $e(t)' \leq 0$, since $c \geq 0$. This gives us that

$$0 \le e(t) \le e(0) = \frac{1}{2} \int_0^1 w_t(x,0)^2 + w_x(x,0)^2 dx = 0,$$

since $w(x,0), w_x(x,0)$ are both 0. Therefore e(t) = 0 and so $w_t = w_x = 0$. It follows that w = 0 in $(0,1) \times (0,\infty)$ since w(x,0) = w(0,t) = 0 for all $(x,t) \in (0,1) \times (0,\infty)$, and hence we have uniqueness for $c \ge 0$.

We now consider the case when c < 0. Following the steps from before, we obtain

$$\int_0^1 \frac{1}{2} (w_t)_t^2 + \frac{1}{2} (w_x)_t^2 + c w_t^2 dx = 0.$$

Denoting

$$\eta(t) = \frac{1}{2} \int_0^1 w_t^2 dx \quad , \frac{1}{2}\beta(t) = \int_0^1 w_x^2 dx$$

we can write this equation as

$$\eta' + 2c\eta + \beta' = 0.$$

which is just an ODE in η , with $\eta(0) = 0$. Multiplying through by the integration factor e^{2ct} , we obtain

$$(e^{2ct}\eta)' + e^{2ct}\beta' = 0$$

which can be integrated to give

$$\eta(t) = -\int_0^t e^{-2c(t-s)}\beta'(s)ds.$$

Now an integration by parts in the integral gives

$$\eta(t) = -\beta(t) + 2c \int_0^t e^{-2c(t-s)}\beta(s)ds$$
(2)

where we have used the fact that $\beta(0) = 0$. This suggests that we want an energy of the form

$$e(t) = \frac{1}{2} \int_0^1 \left[w_t^2 + w_x^2 - 2c \int_0^t e^{-2c(t-s)} w_x(x,s)^2 ds \right] dx.$$

We know from equation (2) that e(t) = 0. Therefore since c < 0, this implies that $w_t = w_x = 0$ in $(0, 1) \times (0, \infty)$, and so by the boundary conditions, w = 0 in $(0, 1) \times (0, \infty)$. Hence we have uniqueness for c < 0.

Problem 6 (Wave decay): Let u be a C^2 solution of $u_{tt} - \Delta u = 0$ in $\mathbb{R}^2 \times (0, \infty)$, with

u(x,0) = 0 and $u_t(x,0) = g(x), \quad x \in \mathbb{R}^2$

where g is a smooth function satisfying g(x) = 0 for |x| > a.

- (a) Show that there exists a constant C such that $|u(x,t)| \leq \frac{C}{t}$ for $t \geq 2(|x|+a)$
- (b) Show that $\lim_{t\to\infty} tu(x,t) = \frac{1}{2\pi} \int_{\mathbb{R}^2} g(y) dy$ for all $x \in \mathbb{R}^2$.

Solution:

(a) Consider Poisson's formula for the solution to wave equation IVP,

$$u(x,t) = \frac{1}{2\pi} \int_{B(x,t)} \frac{g(y)}{(t^2 - |y - x|^2)^{1/2}} dy$$

Since g(x) = 0 for |x| > a, we only need to consider the integration over $B(0, a) \cap B(x, t)$. However, under the assumption that $t \ge 2(|x| + a)$, $B(0, a) \subseteq B(x, r)$. Therefore we consider the integral only over B(0, a)

$$u(x,t) = \frac{1}{2\pi t} \int_{B(0,a)} \frac{g(y)}{(1 - (|y - x|/t)^2)^{1/2}} dy.$$

Moreover, whenever $y \in B(0, a)$ and $t \ge 2(|x| + a)$,

$$\frac{|y-x|}{t} \leq \frac{|x|+a}{t} \leq \frac{1}{2}$$

Therefore we may apply the following bound to u(x,t)

$$\begin{aligned} |u(x,t)| &\leq \frac{1}{2\pi t} \int_{B(0,a)} \frac{|g(y)|}{(1 - (|y - x|/t)^2)^{1/2}} dy \\ &\leq \frac{||g||_{\infty}}{2\pi t} \int_{B(0,a)} \frac{1}{(1 - (1/2)^2)^{1/2}} dy \\ &\leq \frac{||g||_{\infty}}{2\pi t} \frac{2}{\sqrt{3}} \pi a^2 = \frac{||g||_{\infty} a^2}{\sqrt{3}} \frac{1}{t} \end{aligned}$$

(b) Fix $x \in \mathbb{R}^2$ and consider u(x,t) given by Poisson formula, then

$$tu(x,t) = \frac{1}{2\pi} \int_{B(x,t)} \frac{g(y)}{(1 - (|y - x|/t)^2)^{1/2}} dy$$

If t > 2(|x| + a), then we can consider the integral over B(0, a) since g(y) = 0 outside of B(0, a) and $B(0, a) \subseteq B(x, t)$. Moreover

$$\frac{g(y)}{(1-(|y-x|/t)^2)^{1/2}}$$

is bounded in B(0, a). Therefore,

$$\begin{split} \lim_{t \to \infty} t u(x,t) &= \lim_{t \to \infty} \frac{1}{2\pi} \int_{B(0,a)} \frac{g(y)}{(1 - (|y - x|/t)^2)^{1/2}} dy \\ &= \frac{1}{2\pi} \int_{B(0,a)} \lim_{t \to \infty} \frac{g(y)}{(1 - (|y - x|/t)^2)^{1/2}} dy \\ &= \frac{1}{2\pi} \int_{B(0,a)} g(y) dy = \frac{1}{2\pi} \int_{\mathbb{R}^2} g(y) dy \end{split}$$