
PDE Problem Set 1

Problem 1. Complete Problem 1 in Chapter 1 Evans p12, classifying the following equations
in §1.2, a) Linear equations 1,3,6,7,9,12,14, b) Nonlinear Equations 1, 3, 4, 5, 7,8, 9, 12, 13.

Problem 2. Suppose that g is a C1 function. Find and explicit formula for the solution of
the initial value problem.{

ut + b ·Du+ cu = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}

where c ∈ R and b ∈ Rn are constants and g ∈ C1(Rn).

Solution. We treat this as a first order ODE in times and multiply the equation through
by the integrating factor e−ct to obtain

e−ctute
−ctcu+ e−ctb ·Du = 0

which becomes
∂t(e

−ctu) + b ·D(e−ctu) = 0

by a reversal of the product rule. Denoting v(x, t) = e−ctu(x, t), we have the following linear
transport equation IVP {

vt + b ·Dv = 0 in Rn × (0,∞)

v = g on Rn × {t = 0}

which can be solved by characteristics in the usual way to give

v = g(x− bt).

Therefore the explicit solution to the original equation is

u = e−ctg(x− bt).

■
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Problem 3. Suppose that b : Rn → Rn is C1(Rn) and let ϕt : Rn → Rn be the flow map
that solves the ODE

d

dt
ϕt(x) = b(ϕt(x)), ϕ0(x) = x,

namely ϕt is the map that sends the initial point x ∈ Rn to the solution xt ∈ Rn of the ODE
ẋ = b(x) at time t ∈ R.

a) Show that the initial value problem{
ut + b · ∇u = 0 in Rn × R+

u = g on Rn × {t = 0}

has explicit solution
u = g ◦ ϕ−t.

b) Show that the initial value problem{
ut + b · ∇u = f in Rn × R+

u = g on Rn × {t = 0}

has explicit solution

u = g ◦ ϕ−t +

∫ t

0

f ◦ ϕs−tds.

Solution:

a) This was shown in class. It follows since du(t, ϕt(x))/dt = 0 and therefore u(t, ϕt(x)) =
g(x). Since (ϕt)−1 = ϕ−t we obtain u(t, x)g(ϕt(x)). ■

b) We follow a similar strategy to part (a). We have

d

dt
u(t, ϕt(x)) = f(ϕt(x)).

Integrating both sides from 0 to t gives

u(t, ϕt(x))− u(0, x) =

∫ t

0

f(ϕs(x))ds.

Composing with the inverse ϕ−t and using that ϕs ◦ ϕ−t = ϕs−t gives the result.
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Problem 4. Recall that the integration by parts formula in appendix C of Evans∫
V

uvxi
dx =

∫
∂V

uvνi dS −
∫
V

uxi
v dx

holds for all bounded domains V ⊆ Rn and C1 functions u, v. However in lecture (and in
Evan’s proof in Chapter 2) when we proved that

u(x) =

∫
Rn

Φ(x− y)f(y) dy

solved Poisson’s equation −∆u = f , by applying the integration parts formula on the un-
bounded domain Rn\B(0, ϵ). Rewrite the proof of Theorem 1 part (ii) in Chapter 2 correctly
so that you only apply integration by parts on a bounded domain. //

Solution: The proof will follow along the same lines as in the text and the singularity at
0 will be dealt with the same way. To get a bounded domain, we will also truncate to a
ball B(x,R). We will use the integration by parts formula on the ball B(x,R) for R > 0
and then take the limit as R → ∞. In this way we will avoid the singularity at 0 and the
unbounded domain. Following this strategy, we generate three additional terms

∫
B(0,R)c

Φ(x− y)∆f(y) dy,

∫
∂B(0,R)

Φ(x− y)
∂f

∂ν
dS(y),

∫
∂B(0,R)

∂Φ

∂ν
(x− y)f(y) dS(y).

Since f is assumed to have compact support, the first second and third terms all vanish
identically as R → ∞. ■

Problem 5. Prove that the Laplace equation ∆u = 0 is rotation invariant. That is if R is

an orthogonal n× n matrix, and we define

v(x) = u(Rx), x ∈ Rn,

then ∆v = 0.

Solution: We will prove this by direct computation. Note orthogonality of R means that
RRT = I (or

∑n
i=1 Rj,iRk,i = δjk). By the chain rule, we have

∂v

∂xi

=
n∑

j=1

∂u

∂yj
Rji

and
∂2v

∂x2
i

=
n∑

j,k=1

∂2u

∂yjyk
(Rx)RjiRki.

Therefore
n∑

i=1

∂2v

∂x2
i

=
n∑

i,j,k=1

∂2u

∂yj∂yk
(Rx)RjiRki =

n∑
j,k=1

∂2u

∂yj∂yk
(Rx)δjk = ∆u(Rx).
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Problem 6. We say that a function v ∈ C2(Ū) is subharmonic if

−∆v ≤ 0 in U.

(a) Prove that if v is subharmonic then

v(x0) ≤ −
∫
B(x0,r)

v(x)dx for all r > 0.

(b) Let ϕ : R → R be a smooth and convex function. Assume that u is harmonic and set
v = ϕ(u). Prove that v is subharmonic.

Solution:

(a) Following the proof of mean value property for harmonic functions, we have define

ϕ(r) = −
∫
∂B(x0,r)

v(x)dS(x),

taking the derivative and using the divergence theorem gives

ϕ′(r) = −
∫
B(x0,r)

∆vdx ≥ 0.

Therefore ϕ(r) is increasing in r and the result follows and so

u(x0) = lim
r→0

ϕ(r) ≤ ϕ(r) = −
∫
∂B(x0,r)

v(x)dS(x)

The result follows by integrating both sides from 0 to r as in the proof of the harmonic
case.

(b) Since ϕ is convex, we have that ϕ′′(u) ≥ 0. Therefore

∆v = ∆(ϕ(u)) = ϕ′(u)∆u+ ϕ′′(u)|Du|2 ≥ 0.
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