PDE Problem Set 1

Problem 1. Complete Problem 1 in Chapter 1 Evans p12, classifying the following equations
in §1.2, a) Linear equations 1,3,6,7,9,12,14, b) Nonlinear Equations 1, 3, 4, 5, 7,8, 9, 12, 13.

Problem 2. Suppose that g is a C*! function. Find and explicit formula for the solution of
the initial value problem.

u+b-Du+cu=0 in R"x (0,00)
u=g on R"™x {t=0}

where ¢ € R and b € R" are constants and g € C*(R").

Solution. We treat this as a first order ODE in times and multiply the equation through
by the integrating factor e~ to obtain

e “uecu+e b Du=0

which becomes
(e u) +b - D(e u) =0

by a reversal of the product rule. Denoting v(x,t) = e~ “u(x,t), we have the following linear
transport equation IVP

v+b-Dv=0 in R"x(0,00)
v=yg on R"x{t=0}

which can be solved by characteristics in the usual way to give
v = g(x — bt).
Therefore the explicit solution to the original equation is

u=-e “g(x —bt).



Problem 3. Suppose that b : R® — R" is C*(R") and let ¢' : R" — R"™ be the flow map
that solves the ODE
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namely ¢' is the map that sends the initial point z € R" to the solution x; € R™ of the ODE
& = b(z) at time ¢t € R.

a) Show that the initial value problem
u+b-Vu=0 in R” xR,
u=g on R™x{t=0}

has explicit solution
u=gog¢p "

b) Show that the initial value problem
u+b-Vu=f in R" xR,
u=g on R"™x {t=0}

has explicit solution

¢
u:gogb_t—|—/ fo¢*tds.
0

Solution:

a) This was shown in class. It follows since du(t, ¢*(z))/dt = 0 and therefore u(t, ¢*(z))
g(z). Since (¢')™1 = ¢~ we obtain u(t,x)g(¢'(x)).

b) We follow a similar strategy to part (a). We have

d t _ t
Sult, o' () = £(6'(2)).

Integrating both sides from 0 to t gives
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Composing with the inverse ¢ =" and using that ¢° o % = ¢*~* gives the result.



Problem 4. Recall that the integration by parts formula in appendix C of Evans

/uvxi dx:/ uvy"dS—/umvdx
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holds for all bounded domains V' C R" and C! functions u,v. However in lecture (and in
Evan’s proof in Chapter 2) when we proved that

ule) = [ o= 9)fw)dy

solved Poisson’s equation —Awu = f, by applying the integration parts formula on the un-
bounded domain R™\ B(0, €). Rewrite the proof of Theorem 1 part (ii) in Chapter 2 correctly
so that you only apply integration by parts on a bounded domain. //

Solution: The proof will follow along the same lines as in the text and the singularity at
0 will be dealt with the same way. To get a bounded domain, we will also truncate to a
ball B(z, R). We will use the integration by parts formula on the ball B(z, R) for R > 0
and then take the limit as R — oo. In this way we will avoid the singularity at 0 and the
unbounded domain. Following this strategy, we generate three additional terms

! o o,
/B(O’R)c Oz —y)Af(y)dy, /83(071%) O(z —y) 5 dS(y), /a (z — ) f(y) dS(y).
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Since f is assumed to have compact support, the first second and third terms all vanish
identically as R — oo. |

Problem 5. Prove that the Laplace equation Au = 0 is rotation invariant. That is if R is
an orthogonal n X n matrix, and we define

v(z) =u(Rz), xe€R",
then Av = 0.

Solution: We will prove this by direct computation. Note orthogonality of R means that
RR” =1 (or Y7 | R;;Ry; = 0;1). By the chain rule, we have
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Problem 6. We say that a function v € C?(U) is subharmonic if
—Av <0 in U.

(a) Prove that if v is subharmonic then

v(xg) S][ v(x)dx for all r > 0.
B(zo,r)

(b) Let ¢ : R — R be a smooth and convex function. Assume that w is harmonic and set
v = ¢(u). Prove that v is subharmonic.

Solution:

(a) Following the proof of mean value property for harmonic functions, we have define

o(r) = ]é o S ()

taking the derivative and using the divergence theorem gives

&' (r) :][ Avdz > 0.
B(xzo,r)

Therefore ¢(r) is increasing in r and the result follows and so

ulan) =l o) < 0(r) = f  w(a)dS(

dB(zo,r)

The result follows by integrating both sides from 0 to r as in the proof of the harmonic
case.

(b) Since ¢ is convex, we have that ¢”(u) > 0. Therefore

Av = A(g(w)) = ¢'(u) Au+ ¢'(w)| Duf? > 0.



