PDE Problem Set 2 - Solutions

Problem 1: Show that if v is subharmonic —Awv < 0, then v still satisfies the weak maximum
principle

maxu = maxu.
T U

(Hint: Recall problem 6 from last homework). Show by explicit example that a subharmonic
function need not satisfy the weak minimum principle.

Solution: From the last homework, we know that subharmonic functions have the following

sub mean value property
v(z) < ][ vdy
B(z,r)

for any ball B(x,r) C U. The proof of the maximum principle now follows exactly along the
same lines as the proof in the harmonic case. We repeat it here for convenience. We first
assume that U is connected by working on each connected component separately. Recall, if
we assume v achieves its max M = maxgu = u(z?) at a point z° € U, then the closed set
V = {u= M} is non-empty. Fix an = € V, by the sub mean value formula we have

M:U(:U)S][ vdy < M
B(z,r)

for an appropriate choice of r with equality in the case that v = M on B(z,r). It follows
that B(xz,7) C V and therefore V' is also an open set. Since U was assumed connected it
follows that U = V and therefore u is constant on U. The weak maximum principle applies
by applying this result on each connected component.

To see that a sub harmonic function need not satisfy the minimum principle, we note
that the function u = |z|? on B(0, 1) satisfies

—Au=-2n<0

but it has a mimimum value 0 at x = 0 but takes the value 1 on the boundary. [

Problem 2: Let U be a bounded open subset of R". Prove that there exists a constant C,
depending only on U, such that

max [u| < C(max |g| + max | f])
U oU U
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whenever u is a smooth solution of

—Au=f inU
u=gq on OU

(Hint: Show that v = u + %)\ is subharmonic for A = maxg |f|).

Solution: According to the hint, and the fact that A|z|*> = 2n we immediately see that
v=u+ %)\, A = maxg | f| satisfies

—Av = f—max|f] <0
U

and is therefore subharmonic and satisfies the maximum principle max; v = maxgy v. This
implies that

maxgy |x|2)\

ElR
max v < maxv = max + —A ] <maxgqg -+
[ U (g 2n =Y 2n

Similarly if we instead define v = u — 5-|2[*A, then

—Av = f + max]|f| > 0,
U

and so v superharmonic and satisfies the minimum principle (or alternatively —v satisfies
the maximum principle) ming v = mingy v. This implies that
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minu > min v = min g—|—)\ meg——”)\,
U U ou 2n oU 2n

Denoting C' = max{1, mxg—W} we find

max v < C'(max g + max | f])
oU U

U
as well as
—minu < C(—min g + max | f|).
U ou U
Combining these gives the result. [ |

Problem 3. The Kelvin transform Ku = @ of a function v : R" — R is
u(z) == w(z)|z]"? = u(z/|z]?) |z, = #0,

where Z = x/|z|? is the inversion through the unit sphere. Show that if u is harmonic, then
so is . (Hint: First show that D,Z(D,Z)" = |Z|*I, namely the mapping x + 7 is conformal,
meaning it preserves angles.)



Solution: First we show that D,7(D,z)" = |Z|*I. It is helpful to see this in coordinate
notation, first we see that

5ij QIZ'.TJ‘
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where ¢;; is 1 if i = j and is 0 if 4 # j (known as the Kronecker delta). In coordinate free
notation, we can write this as

2 T
D, = |z|™ (1 - %) = (|71 — 2z37).

Now we compute

D,#(D,z)" = |z|°(I —4zz" +42z") = |z|*I.
This means that the transformation x — Z is a conformal map (meaning it locally preserves
angles).

Lets see what happens to the Laplacian when we change coordinates under this conformal
map = — Z. Given a function f(z), we readily find

Aof =) (Duy Do), 05, f + Dif - Ay
lm=1
Using the conformal property D,z(D,z)" = |z|*I gives
Aof = |Z[*'Asf + ApZ - Dif (1)

Next we compute A, Z, we find

Ao =Y O, (2] 205 — 2w || )

=1
= —2m|z| ™t — 22|t — 2na;|w| Tt 4 Say|w|
=2(2 — n)z|z|™*

=2(2 —n)z|z|?

Substituting this into (1) gives
Aof = |7[*"Asf +2(2 = n)|7[T - Ds f.

Note that when n = 2, this immediately gives that f(z) = f(Z) is harmonic whenever
f is. When n > 3, we instead have an extra term. To account for this, we note that
Dz|z)>™™ = (2 — n)z|z|™ as well as Az|z|*™ = 0 away from T = 0 (since |z|*™ is the
fundamental solution). This means that we can write

Auf = |2 (jP " Aaf +2D5|2* ™ - Daf + Asle " f).
H/_/
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Using that A(fg) = Afg+2Df - Dg+ fAg gives the final identity
Aof =z Az (|2 f), 7 #0.

This implies the result to be proved.
[ |

Problem 4: Use Poisson’s formula for the ball to prove that if u is positive and harmonic
in the open ball B(0,r), then

r+ |x|

u(0) < wu(x) <r" WU(O)

n—2 I — |I|
(r =+ [z

This is an explicit form of Harnack’s inequlity.

Solution: Since u is harmonic in the ball B(0,r), then by Poisson’s formula for the ball
u(z) is given by

u(z) = w/@ MdS(y)

na(n)r B(0,r) |z —y|

= epyf M asgy)

B(0,r) [z —y|"

for z € B%(0,r). Since for y € B(0,7) and = € BY(0,7), we have by the triangle and reverse

triangle inequalities
1 1 1

< <
(r+ e = e —y[* = (r—[zf)"

Therefore using the fact that u is always positive, we can bound u(z) above in B(0,r) by

u(z) < 72 (r—|z[)(r + |x|>]éB(0 )u(y)dS(y)
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where we have used Poisson formula on the ball at the point = 0 in the last step. Similarly
we can bound u(z) below in B(0,7) by

ol — [ (r + [z
) = 2 ]{)BM u(y)dS(y)
_ ,r,n—2 (7" - ’LCD U(O)

o+ T

Both of these bounds constitute an explicit form of Harnack’s inequality.



Problem 5. Let U" denote the open half ball U = {z € R" : [z] < 1 and z, > 0}.
Assume that u € C*(UT) N C(U) satisfies

Au=0 inU"
u=0 on Ut N{z e R" : z,, = 0}.

Extend u to the ball U = B(0, 1) by reflecting across the x,, = 0 plane via

o(x) = {u(x) if z,, >0

—u(Ty, ..., Ty, —Tp) ifx, <0

Prove that v € C?(U) and that v is harmonic in U. (Hint: use Poisson’s formula for the ball
to obtain a candidate harmonic function w and then apply the maximum principle on each
half of the ball to show that w = v)

Solution: By Poisson’s formula for the ball we construct a Harmonic function on B(0,1)

1= o’ 0
— |x v(y
w(z) = / _4s(y).
na(n) 8B(0,1) |z — |
Note that w inherits the antisymmetry of v, w(z) = —w(x), & = (z1,..., —x,) since z — &

preserves the ball boundary 0B(0,1) and |Z| = |z|, therefore by changing variables in the
integral

e o(y) 1 faP o(3) o
w(F) = / aS(y) = / s AS(y) = ~uw(z).

na(n) Jagoa 1T —yl" na(n) 1z —g|"

This anti-symmetry implies that w = 0 on OU* N {z,, = 0}. Tt follows that the function
h = v — w is harmonic on U' and U~ separately and satisfies h =0 on OU * and OU".
By the maximum principle (or uniqueness) we see that h = 0 on U+ and U~ and therefore

w=wvon B(0,1) = U+ UU-, implying that v is C? and harmonic. [ |



