
PDE Problem Set 2 - Solutions

Problem 1: Show that if v is subharmonic−∆v ≤ 0, then v still satisfies the weak maximum
principle

max
U

u = max
∂U

u.

(Hint: Recall problem 6 from last homework). Show by explicit example that a subharmonic
function need not satisfy the weak minimum principle.

Solution: From the last homework, we know that subharmonic functions have the following
sub mean value property

v(x) ≤ −
∫
B(x,r)

v dy

for any ball B(x, r) ⊂ U . The proof of the maximum principle now follows exactly along the
same lines as the proof in the harmonic case. We repeat it here for convenience. We first
assume that U is connected by working on each connected component separately. Recall, if
we assume v achieves its max M = maxU u = u(x0) at a point x0 ∈ U , then the closed set
V = {u = M} is non-empty. Fix an x ∈ V , by the sub mean value formula we have

M = v(x) ≤ −
∫
B(x,r)

v dy ≤ M

for an appropriate choice of r with equality in the case that v = M on B(x, r). It follows
that B(x, r) ⊂ V and therefore V is also an open set. Since U was assumed connected it
follows that U = V and therefore u is constant on U . The weak maximum principle applies
by applying this result on each connected component.

To see that a sub harmonic function need not satisfy the minimum principle, we note
that the function u = |x|2 on B(0, 1) satisfies

−∆u = −2n ≤ 0

but it has a mimimum value 0 at x = 0 but takes the value 1 on the boundary. ■

Problem 2: Let U be a bounded open subset of Rn. Prove that there exists a constant C,
depending only on U , such that

max
U

|u| ≤ C(max
∂U

|g|+max
U

|f |)
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whenever u is a smooth solution of {
−∆u = f in U

u = g on ∂U

(Hint: Show that v = u+ |x|2
2n

λ is subharmonic for λ = maxŪ |f |).

Solution: According to the hint, and the fact that ∆|x|2 = 2n we immediately see that

v = u+ |x|2
2n

λ, λ = maxU |f | satisfies

−∆v = f −max
U

|f | ≤ 0

and is therefore subharmonic and satisfies the maximum principle maxU v = max∂U v. This
implies that

max
U

u ≤ max
U

v = max
∂U

(
g +

|x|2

2n
λ

)
≤ max

∂U
g +

max∂U |x|2

2n
λ.

Similarly if we instead define v = u− 1
2n
|x|2λ, then

−∆v = f +max
U

|f | ≥ 0,

and so v superharmonic and satisfies the minimum principle (or alternatively −v satisfies
the maximum principle) minU v = min∂U v. This implies that

min
U

u ≥ min
U

v = min
∂U

(
g − |x|2

2n
λ

)
≥ min

∂U
g − max∂U |x|2

2n
λ.

Denoting C = max{1, max∂U |x|2
2n

} we find

max
U

u ≤ C(max
∂U

g +max
U

|f |)

as well as
−min

U
u ≤ C(−min

∂U
g +max

U
|f |).

Combining these gives the result. ■

Problem 3. The Kelvin transform Ku = ū of a function u : Rn → R is

ū(x) := u(x̄)|x̄|n−2 = u(x/|x|2)|x|2−n, x ̸= 0,

where x̄ = x/|x|2 is the inversion through the unit sphere. Show that if u is harmonic, then
so is ū. (Hint: First show that Dxx̄(Dxx̄)

⊤ = |x̄|4I, namely the mapping x 7→ x̄ is conformal,
meaning it preserves angles.)
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Solution: First we show that Dxx̄(Dxx̄)
⊤ = |x̄|4I. It is helpful to see this in coordinate

notation, first we see that

∂xj
x̄i =

δij
|x|2

− 2xixj

|x|4
,

where δij is 1 if i = j and is 0 if i ̸= j (known as the Kronecker delta). In coordinate free
notation, we can write this as

Dxx̄ = |x|−2

(
I − 2xx⊤

|x|2

)
= (|x̄|2I − 2x̄x̄⊤).

Now we compute
Dxx̄(Dxx̄)

⊤ = |x̄|2(I − 4x̄x̄⊤ + 4x̄x̄⊤) = |x̄|4I.

This means that the transformation x 7→ x̄ is a conformal map (meaning it locally preserves
angles).

Lets see what happens to the Laplacian when we change coordinates under this conformal
map x 7→ x̄. Given a function f(x̄), we readily find

∆xf =
n∑

ℓ,m=1

(Dxx̄ℓ ·Dxx̄m)∂x̄m∂x̄ℓ
f +Dx̄f ·∆xx̄.

Using the conformal property Dxx̄(Dxx̄)
⊤ = |x̄|4I gives

∆xf = |x̄|4∆x̄f +∆xx̄ ·Dx̄f (1)

Next we compute ∆xx̄, we find

∆xx̄i =
n∑

j=1

∂xj
(|x|−2δij − 2xixj|x|−4)

= −2xi|x|−4 − 2xi|x|−4 − 2nxi|x|−4 + 8xi|x|−4

= 2(2− n)xi|x|−4

= 2(2− n)x̄i|x̄|2

Substituting this into (1) gives

∆xf = |x̄|4∆x̄f + 2(2− n)|x̄|2x̄ ·Dx̄f.

Note that when n = 2, this immediately gives that f̄(x) = f(x̄) is harmonic whenever
f is. When n ≥ 3, we instead have an extra term. To account for this, we note that
Dx̄|x̄|2−n = (2 − n)x̄|x̄|−n as well as ∆x̄|x̄|2−n = 0 away from x̄ = 0 (since |x|2−n is the
fundamental solution). This means that we can write

∆xf = |x̄|2+n
(
|x̄|2−n∆x̄f + 2Dx̄|x̄|2−n ·Dx̄f +∆x̄|x̄|2−n︸ ︷︷ ︸

=0

f
)
.
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Using that ∆(fg) = ∆fg + 2Df ·Dg + f∆g gives the final identity

∆xf = |x̄|2+n∆x̄(|x̄|2−nf), x̄ ̸= 0.

This implies the result to be proved.
■

Problem 4: Use Poisson’s formula for the ball to prove that if u is positive and harmonic
in the open ball B(0, r), then

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0).

This is an explicit form of Harnack’s inequlity.

Solution: Since u is harmonic in the ball B(0, r), then by Poisson’s formula for the ball
u(x) is given by

u(x) =
r2 − |x|2

nα(n)r

∫
∂B(0,r)

u(y)

|x− y|n
dS(y)

= rn−2(r2 − |x|2)−
∫
∂B(0,r)

u(y)

|x− y|n
dS(y)

for x ∈ B0(0, r). Since for y ∈ B(0, r) and x ∈ B0(0, r), we have by the triangle and reverse
triangle inequalities

1

(r + |x|)n
≤ 1

|x− y|n
≤ 1

(r − |x|)n

Therefore using the fact that u is always positive, we can bound u(x) above in B(0, r) by

u(x) ≤ rn−2 (r − |x|)(r + |x|)
(r − |x|)n

−
∫
∂B(0,r)

u(y)dS(y)

= rn−2 (r + |x|)
(r − |x|)n−1

u(0)

where we have used Poisson formula on the ball at the point x = 0 in the last step. Similarly
we can bound u(x) below in B(0, r) by

u(x) ≥ rn−2 (r − |x|)(r + |x|)
(r + |x|)n

−
∫
∂B(0,r)

u(y)dS(y)

= rn−2 (r − |x|)
(r + |x|)n−1

u(0).

Both of these bounds constitute an explicit form of Harnack’s inequality.
■
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Problem 5. Let U+ denote the open half ball U+ = {x ∈ Rn : |x| < 1 and xn > 0}.
Assume that u ∈ C2(U+) ∩ C(U+) satisfies{

∆u = 0 in U+

u = 0 on ∂U+ ∩ {x ∈ Rn : xn = 0}.

Extend u to the ball U = B(0, 1) by reflecting across the xn = 0 plane via

v(x) :=

{
u(x) if xn ≥ 0

−u(x1, . . . , xn−1,−xn) if xn < 0

Prove that v ∈ C2(U) and that v is harmonic in U . (Hint: use Poisson’s formula for the ball
to obtain a candidate harmonic function w and then apply the maximum principle on each
half of the ball to show that w = v)
Solution: By Poisson’s formula for the ball we construct a Harmonic function on B(0, 1)
via

w(x) =
1− |x|2

nα(n)

∫
∂B(0,1)

v(y)

|x− y|n
dS(y).

Note that w inherits the antisymmetry of v, w(x̃) = −w(x), x̃ = (x1, . . . ,−xn) since x 7→ x̃
preserves the ball boundary ∂B(0, 1) and |x̃| = |x|, therefore by changing variables in the
integral

w(x̃) =
1− |x̃|2

nα(n)

∫
∂B(0,1)

v(y)

|x̃− y|n
dS(y) =

1− |x|2

nα(n)

∫
∂B(0,1)

v(ỹ)

|x̃− ỹ|n
dS(y) = −w(x).

This anti-symmetry implies that w = 0 on ∂U+ ∩ {xn = 0}. It follows that the function
h = v − w is harmonic on U+ and U− separately and satisfies h = 0 on ∂U+ and ∂U−.
By the maximum principle (or uniqueness) we see that h = 0 on U+ and U− and therefore
w = v on B(0, 1) = U+ ∪ U−, implying that v is C2 and harmonic. ■
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