PDE Problem Set 2 - Solutions

Problem 1: Show that if v is subharmonic $-\Delta v \leq 0$, then v still satisfies the weak maximum principle

$$
\max_{\overline{U}} u = \max_{\partial U} u.
$$

(Hint: Recall problem 6 from last homework). Show by explicit example that a subharmonic function need not satisfy the weak minimum principle.

Solution: From the last homework, we know that subharmonic functions have the following sub mean value property

$$
v(x) \le \int_{B(x,r)} v \, dy
$$

for any ball $B(x, r) \subset U$. The proof of the maximum principle now follows exactly along the same lines as the proof in the harmonic case. We repeat it here for convenience. We first assume that U is connected by working on each connected component separately. Recall, if we assume v achieves its max $M = \max_{\overline{U}} u = u(x^0)$ at a point $x^0 \in U$, then the closed set $V = \{u = M\}$ is non-empty. Fix an $x \in V$, by the sub mean value formula we have

$$
M = v(x) \le \int_{B(x,r)} v \, dy \le M
$$

for an appropriate choice of r with equality in the case that $v = M$ on $B(x, r)$. It follows that $B(x, r) \subset V$ and therefore V is also an open set. Since U was assumed connected it follows that $U = V$ and therefore u is constant on U. The weak maximum principle applies by applying this result on each connected component.

To see that a sub harmonic function need not satisfy the minimum principle, we note that the function $u = |x|^2$ on $B(0, 1)$ satisfies

$$
-\Delta u = -2n \le 0
$$

but it has a mimimum value 0 at $x = 0$ but takes the value 1 on the boundary.

Problem 2: Let U be a bounded open subset of \mathbb{R}^n . Prove that there exists a constant C, depending only on U , such that

$$
\max_{\overline{U}}|u| \le C(\max_{\partial U}|g| + \max_{\overline{U}}|f|)
$$

whenever u is a smooth solution of

$$
\begin{cases}\n-\Delta u = f & \text{in } U \\
u = g & \text{on } \partial U\n\end{cases}
$$

(Hint: Show that $v = u + \frac{|x|^2}{2n}$ $\frac{x|^2}{2n}\lambda$ is subharmonic for $\lambda = \max_{\bar{U}} |f|$.

Solution: According to the hint, and the fact that $\Delta |x|^2 = 2n$ we immediately see that $v = u + \frac{|x|^2}{2n}$ $\frac{x}{2n}\lambda$, $\lambda = \max_{\overline{U}} |f|$ satisfies

$$
-\Delta v = f - \max_{\overline{U}} |f| \leq 0
$$

and is therefore subharmonic and satisfies the maximum principle $\max_{\overline{U}} v = \max_{\partial U} v$. This implies that

$$
\max_{\overline{U}} u \le \max_{\overline{U}} v = \max_{\partial U} \left(g + \frac{|x|^2}{2n} \lambda \right) \le \max_{\partial U} g + \frac{\max_{\partial U} |x|^2}{2n} \lambda.
$$

Similarly if we instead define $v = u - \frac{1}{2u}$ $\frac{1}{2n}|x|^2\lambda$, then

$$
-\Delta v = f + \max_{\overline{U}} |f| \ge 0,
$$

and so v superharmonic and satisfies the minimum principle (or alternatively $-v$ satisfies the maximum principle) $\min_{\overline{U}} v = \min_{\partial U} v$. This implies that

$$
\min_{\overline{U}} u \ge \min_{\overline{U}} v = \min_{\partial U} \left(g - \frac{|x|^2}{2n} \lambda \right) \ge \min_{\partial U} g - \frac{\max_{\partial U} |x|^2}{2n} \lambda.
$$

Denoting $C = \max\{1, \frac{\max_{\partial U} |x|^2}{2n}\}$ $\frac{\partial U}{\partial n}$ we find

$$
\max_{\overline{U}} u \le C(\max_{\partial U} g + \max_{\overline{U}} |f|)
$$

as well as

$$
-\min_{\overline{U}} u \leq C(-\min_{\partial U} g + \max_{\overline{U}} |f|).
$$

Combining these gives the result.

Problem 3. The Kelvin transform $\mathcal{K}u = \bar{u}$ of a function $u : \mathbb{R}^n \to \mathbb{R}$ is

$$
\bar{u}(x) := u(\bar{x})|\bar{x}|^{n-2} = u(x/|x|^2)|x|^{2-n}, \quad x \neq 0,
$$

where $\bar{x} = x/|x|^2$ is the inversion through the unit sphere. Show that if u is harmonic, then so is \bar{u} . (Hint: First show that $D_x \bar{x} (D_x \bar{x})^\top = |\bar{x}|^4 I$, namely the mapping $x \mapsto \bar{x}$ is conformal, meaning it preserves angles.)

Solution: First we show that $D_x \bar{x} (D_x \bar{x})^\top = |\bar{x}|^4 I$. It is helpful to see this in coordinate notation, first we see that

$$
\partial_{x_j}\bar{x}_i = \frac{\delta_{ij}}{|x|^2} - \frac{2x_ix_j}{|x|^4},
$$

where δ_{ij} is 1 if $i = j$ and is 0 if $i \neq j$ (known as the Kronecker delta). In coordinate free notation, we can write this as

$$
D_x \bar{x} = |x|^{-2} \left(I - \frac{2xx^{\top}}{|x|^2} \right) = (|\bar{x}|^2 I - 2\bar{x}\bar{x}^{\top}).
$$

Now we compute

$$
D_x \bar{x} (D_x \bar{x})^{\top} = |\bar{x}|^2 (I - 4\bar{x} \bar{x}^{\top} + 4\bar{x} \bar{x}^{\top}) = |\bar{x}|^4 I.
$$

This means that the transformation $x \mapsto \bar{x}$ is a conformal map (meaning it locally preserves angles).

Lets see what happens to the Laplacian when we change coordinates under this conformal map $x \mapsto \bar{x}$. Given a function $f(\bar{x})$, we readily find

$$
\Delta_x f = \sum_{\ell,m=1}^n (D_x \bar{x}_\ell \cdot D_x \bar{x}_m) \partial_{\bar{x}_m} \partial_{\bar{x}_\ell} f + D_{\bar{x}} f \cdot \Delta_x \bar{x}.
$$

Using the conformal property $D_x \bar{x} (D_x \bar{x})^{\top} = |\bar{x}|^4 I$ gives

$$
\Delta_x f = |\bar{x}|^4 \Delta_{\bar{x}} f + \Delta_x \bar{x} \cdot D_{\bar{x}} f \tag{1}
$$

Next we compute $\Delta_x \bar{x}$, we find

$$
\Delta_x \bar{x}_i = \sum_{j=1}^n \partial_{x_j} (|x|^{-2} \delta_{ij} - 2x_i x_j |x|^{-4})
$$

= $-2x_i |x|^{-4} - 2x_i |x|^{-4} - 2nx_i |x|^{-4} + 8x_i |x|^{-4}$
= $2(2 - n)x_i |x|^{-4}$
= $2(2 - n)\bar{x}_i |\bar{x}|^2$

Substituting this into (1) gives

$$
\Delta_x f = |\bar{x}|^4 \Delta_{\bar{x}} f + 2(2 - n)|\bar{x}|^2 \bar{x} \cdot D_{\bar{x}} f.
$$

Note that when $n = 2$, this immediately gives that $\bar{f}(x) = f(\bar{x})$ is harmonic whenever f is. When $n \geq 3$, we instead have an extra term. To account for this, we note that $D_{\bar{x}}|\bar{x}|^{2-n} = (2-n)\bar{x}|\bar{x}|^{-n}$ as well as $\Delta_{\bar{x}}|\bar{x}|^{2-n} = 0$ away from $\bar{x} = 0$ (since $|x|^{2-n}$ is the fundamental solution). This means that we can write

$$
\Delta_x f = |\bar{x}|^{2+n} \left(|\bar{x}|^{2-n} \Delta_{\bar{x}} f + 2D_{\bar{x}} |\bar{x}|^{2-n} \cdot D_{\bar{x}} f + \underbrace{\Delta_{\bar{x}} |\bar{x}|^{2-n}}_{=0} f \right).
$$

Using that $\Delta(fg) = \Delta fg + 2Df \cdot Dg + f\Delta g$ gives the final identity

$$
\Delta_x f = |\bar{x}|^{2+n} \Delta_{\bar{x}} (|\bar{x}|^{2-n} f), \quad \bar{x} \neq 0.
$$

This implies the result to be proved.

Problem 4: Use Poisson's formula for the ball to prove that if u is positive and harmonic in the open ball $B(0, r)$, then

$$
r^{n-2}\frac{r-|x|}{(r+|x|)^{n-1}}u(0) \le u(x) \le r^{n-2}\frac{r+|x|}{(r-|x|)^{n-1}}u(0).
$$

This is an explicit form of Harnack's inequlity.

Solution: Since u is harmonic in the ball $B(0, r)$, then by Poisson's formula for the ball $u(x)$ is given by

$$
u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B(0,r)} \frac{u(y)}{|x - y|^n} dS(y)
$$

= $r^{n-2} (r^2 - |x|^2) \int_{\partial B(0,r)} \frac{u(y)}{|x - y|^n} dS(y)$

for $x \in B⁰(0,r)$. Since for $y \in B(0,r)$ and $x \in B⁰(0,r)$, we have by the triangle and reverse triangle inequalities

$$
\frac{1}{(r+|x|)^n} \le \frac{1}{|x-y|^n} \le \frac{1}{(r-|x|)^n}
$$

Therefore using the fact that u is always positive, we can bound $u(x)$ above in $B(0,r)$ by

$$
u(x) \le r^{n-2} \frac{(r-|x|)(r+|x|)}{(r-|x|)^n} \int_{\partial B(0,r)} u(y) dS(y)
$$

= $r^{n-2} \frac{(r+|x|)}{(r-|x|)^{n-1}} u(0)$

where we have used Poisson formula on the ball at the point $x = 0$ in the last step. Similarly we can bound $u(x)$ below in $B(0, r)$ by

$$
u(x) \ge r^{n-2} \frac{(r-|x|)(r+|x|)}{(r+|x|)^n} \int_{\partial B(0,r)} u(y) dS(y)
$$

= $r^{n-2} \frac{(r-|x|)}{(r+|x|)^{n-1}} u(0).$

Both of these bounds constitute an explicit form of Harnack's inequality.

■

■

Problem 5. Let U^+ denote the open half ball $U^+ = \{x \in \mathbb{R}^n : |x| < 1 \text{ and } x_n > 0\}.$ Assume that $u \in C^2(U^+) \cap C(\overline{U^+})$ satisfies

$$
\begin{cases} \Delta u = 0 & \text{in } U^+ \\ u = 0 & \text{on } \partial U^+ \cap \{x \in \mathbb{R}^n : x_n = 0\}. \end{cases}
$$

Extend u to the ball $U = B(0, 1)$ by reflecting across the $x_n = 0$ plane via

$$
v(x) := \begin{cases} u(x) & \text{if } x_n \ge 0\\ -u(x_1, \dots, x_{n-1}, -x_n) & \text{if } x_n < 0 \end{cases}
$$

Prove that $v \in C^2(U)$ and that v is harmonic in U. (Hint: use Poisson's formula for the ball to obtain a candidate harmonic function w and then apply the maximum principle on each half of the ball to show that $w = v$)

Solution: By Poisson's formula for the ball we construct a Harmonic function on $B(0,1)$ via

$$
w(x) = \frac{1 - |x|^2}{n\alpha(n)} \int_{\partial B(0,1)} \frac{v(y)}{|x - y|^n} dS(y).
$$

Note that w inherits the antisymmetry of v, $w(\tilde{x}) = -w(x)$, $\tilde{x} = (x_1, \ldots, -x_n)$ since $x \mapsto \tilde{x}$ preserves the ball boundary $\partial B(0,1)$ and $|\tilde{x}| = |x|$, therefore by changing variables in the integral

$$
w(\tilde{x}) = \frac{1 - |\tilde{x}|^2}{n\alpha(n)} \int_{\partial B(0,1)} \frac{v(y)}{|\tilde{x} - y|^n} dS(y) = \frac{1 - |x|^2}{n\alpha(n)} \int_{\partial B(0,1)} \frac{v(\tilde{y})}{|\tilde{x} - \tilde{y}|^n} dS(y) = -w(x).
$$

This anti-symmetry implies that $w = 0$ on $\partial U^+ \cap \{x_n = 0\}$. It follows that the function $h = v - w$ is harmonic on U^+ and U^- separately and satisfies $h = 0$ on ∂U^+ and ∂U^- . By the maximum principle (or uniqueness) we see that $h = 0$ on $\overline{U^+}$ and $\overline{U^-}$ and therefore $w = v$ on $\overline{B(0,1)} = \overline{U^+} \cup \overline{U^-}$, implying that v is C^2 and harmonic.