Course Schedule

MATH 7540 - Spring 2025

Below is a course schedule. It contains an outline of course topics, homework, quiz and exam dates.

Week Date Topics Section HW
1 Functional Analysis Preliminaries Appendix D, Notes
M 1/13 Introduction, Review of Measure Theory/Real Analysis Appendix D, Notes
W 1/15 More Real Analysis Preliminaries Appendix D, Notes
F 1/17 Banach and Hilbert Spaces Appendix D, Notes
2 M 1/20 MLK Jr. Holiday - No Class
W 1/22 Classes Cancelled (Snow)
F 1/24 Bounded Linear Operators, Dual Spaces Appendix D, Notes
3 M 1/27 Weak and Weak-* Topologies, Banach Alaoglu, Dunford Pettis Appendix D, Notes
W 1/29 Compactness in Banach Spaces, Arzela-Ascoli Appendix D, Notes
F 1/31 Compactness in Banach Spaces, Riesz-Kolmogorov Appendix D, Notes
4 Fourier Analysis on $S(\mathbb{R}^n)$, Extension to $L^p$, and Tempered Distributions Notes
M 2/3 The Fourier Transform on $S(\mathbb{R}^n)$ Notes
W 2/5 Properties of the Fourier Transform, Fourier Inversion Notes
F 2/7 Riemann-Lebesgue Lemma, Extension to $L^p$, Hausdorff-Young Notes
5 M 2/10 Tempered Distributions and the Fourier Transform on $S'(\mathbb{R}^n)$, Periodic Fourier Series Notes
W 2/12 Clifford Lectures
F 2/14 Clifford Lectures
6 Sobolev Spaces on $\mathbb{R}^n$ Notes
M 2/17 Sobolev Spaces on $\mathbb{R}^n$: Definitions via Fourier Transform, Basic Properties Notes
W 2/19 Sobolev Embedding Theorems ($H^s$) Notes
F 2/21 Compactness Theorems ($H^s$) Notes
7 Singular Integrals (Calderón-Zygmund Theory) Notes
M 2/24 Intro to Singular Integrals: Riesz Potential Notes
W 2/26 Hardy-Littlewood-Sobolev Theorem Notes
F 2/28 Maximal Function, Vitali Covering Lemma Notes
- M 3/3 Mardi Gras/Spring Break - No Class
W 3/5 Mardi Gras/Spring Break - No Class
F 3/7 Mardi Gras/Spring Break - No Class
8 M 3/10 Proof of HLS, Fractional Sobolev Embeddings Notes
W 3/12 Calderon-Zygmund Potentials, CZ Decomposition Notes
F 3/14 Proof of CZ Theorem (Weak Type Estimate) Notes
9 M 3/17 Proof of CZ Theorem ($L^p$ Estimate) Notes
Sobolev Spaces on Bounded Domains Ch 5
W 3/19 Sobolev Spaces on Bounded Domains (Evans Ch. 5) Ch 5
F 3/21 Extension Theorems (Bounded Domains) Ch 5
10 M 3/24 Trace Theorems (Bounded Domains) Ch 5
W 3/26 Sobolev Embedding Theorems (Bounded Domains) Ch 5
F 3/28 Compactness Theorems (Bounded Domains) Ch 5
11 Applications to Elliptic PDE Ch 6
M 3/31 Applications to Elliptic PDE: Weak Solutions, Lax-Milgram Ch 6
W 4/2 Applications to Elliptic PDE: Weak Solutions, Lax-Milgram (Continued) Ch 6
F 4/4 Regularity Theory for Elliptic Equations Ch 6
12 M 4/7 Regularity Theory Continued Ch 6
W 4/9 Maximum Principles for Elliptic Equations Ch 6
F 4/11 Maximum Principles Continued Ch 6
13 M 4/14 Lagniappe Days (No Class)
W 4/16 Lagniappe Days (No Class)
F 4/18 Eigenvalues and Eigenfunctions Ch 6
14 Semigroup Theory Ch 7, Notes
M 4/21 Semigroup Theory: Definitions, Examples Ch 7, Notes
W 4/23 Hille-Yosida Theorem Ch 7, Notes
F 4/25 Applications of Semigroup Theory Ch 7, Notes
15 M 4/28 Applications of Semigroup Theory Continued Ch 7, Notes
Advanced Topic Notes/Papers
W 4/30 Advanced Topic (e.g., DeGiorgi-Nash-Moser) Notes/Papers