
PDE Problem Set 1

Due: Mon Feb 10

Problem 1: Completeness of Hölder Spaces

(a) Let 0 < α ≤ 1. Show that the Hölder space Cα(Ω) is a Banach space, where Ω is
a bounded open subset of Rn. Recall that Cα(Ω) consists of continuous functions
u : Ω → R such that

∥u∥Cα(Ω) = ∥u∥C(Ω) + sup
x,y∈Ω,x ̸=y

|u(x)− u(y)|
|x− y|α

< ∞.

(b) Consider the space Ck,α(Ω), where k is a positive integer and 0 < α ≤ 1. This space
consists of functions u whose partial derivatives up to order k exist and are continuous,
and the k-th order partial derivatives are Hölder continuous with exponent α. Define
a suitable norm on Ck,α(Ω) and prove that it is a Banach space.

(c) Is the inclusion map Cβ(Ω) ↪→ Cα(Ω) continuous when 0 < α < β ≤ 1? Is it compact?

Hint: For part (a), you may want to start by showing that if (un) is a Cauchy sequence in
Cα(Ω), then it is also Cauchy in C(Ω). Use the completeness of C(Ω) to find a candidate
limit function u. Then show that u is indeed in Cα(Ω) and that un converges to u in the
Hölder norm. For part (c), consider using the Arzela-Ascoli Theorem.

Problem 2: Arzela-Ascoli Theorem on Rn

Let F be a family of continuous functions from Rn to R such that:

(i) (Pointwise Boundedness) For each x ∈ Rn, the set {f(x) : f ∈ F} is bounded.

(ii) (Equicontinuity) For every ϵ > 0 and every x0 ∈ Rn, there exists δ > 0 such that
|f(x)− f(x0)| < ϵ for all f ∈ F and all x ∈ Rn with |x− x0| < δ.

(iii) (Uniform decay at infinity) For every ϵ > 0 there exists R > 0 such that for all f ∈ F ,
|f(x)| < ϵ whenever |x| > R.
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Prove that F is precompact in the space of continuous functions on Rn with the uniform
norm.

Hint: You can adapt the proof of the Arzela-Ascoli Theorem for functions on a compact
set to this case. Consider a sequence (fn) in F . First, apply the standard Arzela-Ascoli
Theorem to the restrictions of the functions to the closed ball B(0, R) for increasing values
of R. Use a diagonalization argument to extract a subsequence that converges uniformly on
every closed ball. Finally, use the uniform decay condition (iii) to show that this subsequence
converges uniformly on all of Rn.

Problem 3: Bounded Linear Operators and Dual Spaces

(a) Let X and Y be Banach spaces, and let T : X → Y be a bounded linear operator.
The adjoint operator T ∗ : Y ∗ → X∗ is defined by ⟨T ∗y∗, x⟩ = ⟨y∗, Tx⟩ for all y∗ ∈ Y ∗

and x ∈ X. Prove that ∥T ∗∥ ≤ ∥T∥.

(b) Let 1 < p < ∞ and let q be its conjugate exponent, i.e., 1
p
+ 1

q
= 1. Show that the

dual space of Lp(Ω) is isometrically isomorphic to Lq(Ω), where Ω is a bounded open
subset of Rn.

Hint: For part (a), use the definition of the adjoint operator. For part (b) you can use the
Riesz Representation theorem for Lp spaces.

Problem 4: Uniform Convexity and Weak Convergence
A Banach space X is said to be uniformly convex if for every ϵ > 0, there exists δ > 0 such
that for all x, y ∈ X with ∥x∥ = ∥y∥ = 1, if ∥x− y∥ ≥ ϵ, then

∥∥x+y
2

∥∥ ≤ 1− δ.

(a) Prove that every uniformly convex Banach space is strictly convex. That is, if x ̸= y
and ∥x∥ = ∥y∥ = 1, then for all 0 < t < 1, ∥tx+ (1− t)y∥ < 1.

(b) Show that Lp(Ω) is uniformly convex for 1 < p < ∞, where Ω is a bounded open subset
of Rn.

(c) Let X be a uniformly convex Banach space. Suppose (xn) is a sequence in X that
converges weakly to x ∈ X, and limn→∞ ∥xn∥ = ∥x∥. Show that (xn) converges
strongly to x.

Hint: For part (a), consider the contrapositive. For part (b), you can use Clarkson’s inequal-
ities (which you may assume without proof and are written below). For part (c), consider
the sequence ( xn

∥xn∥) if x ̸= 0.

Bonus: Prove Clarkson’s Inequalities: Let 2 ≤ p < ∞. Then for all u, v ∈ Lp(Ω),∥∥∥∥u+ v

2

∥∥∥∥p

p

+

∥∥∥∥u− v

2

∥∥∥∥p

p

≤ 1

2

(
∥u∥pp + ∥v∥pp

)
.
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Let 1 < p ≤ 2. Then for all u, v ∈ Lp(Ω),∥∥∥∥u+ v

2

∥∥∥∥q

p

+

∥∥∥∥u− v

2

∥∥∥∥q

p

≤
(
1

2

(
∥u∥pp + ∥v∥pp

))q−1

,

where q is the conjugate exponent of p, i.e., 1
p
+ 1

q
= 1.

Hint: For the case 2 ≤ p < ∞, you can start by proving the inequality∣∣∣∣a+ b

2

∣∣∣∣p + ∣∣∣∣a− b

2

∣∣∣∣p ≤ 1

2
(|a|p + |b|p)

for all real numbers a and b. This can be done using calculus (consider the function f(t) =
|1+t|p+ |1−t|p and show that it is maximized at t = 0 on the interval [0, 1]). Then, integrate
the pointwise inequality∣∣∣∣u(x) + v(x)

2

∣∣∣∣p + ∣∣∣∣u(x)− v(x)

2

∣∣∣∣p ≤ 1

2
(|u(x)|p + |v(x)|p)

over Ω.
For the case 1 < p ≤ 2, you can use duality. First, prove the inequality for p = 2. Then,

use the fact that the dual space of Lp is Lq and the result for 2 ≤ q < ∞ to deduce the
inequality for 1 < p < 2.

Problem 5: Riesz-Kolmogorov Compactness Criterion in L1(R)
Let Ω = (0, 1) and consider the sequence of functions (fn) in L1(R) defined by

fn(x) =

{
n if x ∈ (0, 1

n
)

0 otherwise

for n = 1, 2, 3, . . . .

(a) Show that the sequence (fn) is bounded in L1(R).

(b) Show that the sequence (fn) is not relatively compact in L1(R) by directly considering
the definition of relative compactness (i.e., by showing that there is no convergent
subsequence).

(c) Determine which of the conditions of the Riesz-Kolmogorov compactness criterion fails
for the sequence (fn). Provide a detailed justification for your answer.
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