Piecewise polynomial interpolation

For certain x-values $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ we are given the function values $y_{i}=f\left(x_{i}\right)$. In some cases below we will also assume that we are additionally given some derivatives $s_{i}=f^{\prime}\left(x_{i}\right)$. We want to find an interpolating function $p(x)$ which satisfies all the given data and is hopefully close to the function $f(x)$.
We could use a single interpolating polynomial $p(x)$. But this is usually a bad idea: for a large value of n we will obtain large oscillations.
We should only use an interpolating polynomial if we know that this will not be a problem and several of the following conditions hold

- the derivatives $f^{(k)}$ do not grow very fast (e.g., $f(x)=\sin x$)
- the points x_{1}, \ldots, x_{n} are close together, and we evaluate $p(x)$ at a point \tilde{x} inside of the interval $\left[x_{1}, x_{n}\right]$
- for equidistant nodes, we only evaluate $p(x)$ for \tilde{x} near the center of the interval $\left[x_{1}, \ldots, x_{n}\right]$
- if we want to evaluate $p(x)$ over a whole interval $[a, b]$ we should choose x_{1}, \ldots, x_{n} as Chebyshev nodes for this interval. In all other cases it is much better to use a piecewise polynomial: We break the interval $[a, b]$ into smaller subintervals, and use polynomial interpolation with low degree polynomials on each subinterval. Typically we choose polynomial degree of about 3 . This is a good compromise between small errors and control of oscillations.

Piecewise linear interpolation

We are given x-values x_{1}, \ldots, x_{n} and y-values $y_{i}=f\left(x_{i}\right)$ for $i=1, \ldots, n$. With $h_{i}:=x_{i+1}-x_{i}$ we get

$$
\begin{equation*}
L_{i}(x):=f\left[x_{i}\right]+f\left[x_{i}, x_{i+1}\right]\left(x-x_{i}\right)=y_{i}+\frac{y_{i+1}-y_{i}}{h}\left(x-x_{i}\right) . \tag{1}
\end{equation*}
$$

We then define $p(x)$ as the piecewise linear function with

$$
\text { for } x \in\left[x_{i}, x_{i+1}\right]: \quad p(x)=L_{i}(x)
$$

We then have from the error formula for polynomial interpolation with 2 points that

$$
\text { for } x \in\left[x_{i}, x_{i+1}\right]: \quad \begin{aligned}
& f(x)-p(x)
\end{aligned}=\frac{f^{\prime \prime}(t)}{2!}\left(x-x_{i}\right)\left(x-x_{i+1}\right),
$$

since the function $\left|\left(x-x_{i}\right)\left(x-x_{i+1}\right)\right|$ has its maximum $\frac{h_{i}}{2} \cdot \frac{h_{i}}{2}$ in the midpoint of the interval $\left[x_{i}, x_{i+1}\right]$.
We see that the interpolation error satisfies $|f(x)-p(x)| \leq C h_{i}^{2}$ where $C=\frac{1}{8} \max _{t \in\left[x_{1}, x_{n}\right]}\left|f^{\prime \prime}(t)\right|$. If we choose equidistant points with $h_{i}=(b-a) /(n-1)$ we have $|f(x)-p(x)| \leq C(b-a)^{2} / n^{2}$, i.e., doubling the number of points reduces the error bound by a factor of 4 .
However, if the function $f(x)$ has different behavior on different parts of the interval we can get better results by choosing the points x_{1}, \ldots, x_{n} accordingly: If $\left|f^{\prime \prime}(x)\right|$ is small in a certain region we can use a wider spacing h_{i}; if $\left|f^{\prime \prime}(x)\right|$ is large in another reason we should place the nodes more closely, so that h_{i} is small there. In this way we can achieve a small overall error

$$
\max _{x \in\left[x_{1}, x_{n}\right]}|f(x)-p(x)| \leq \frac{1}{8} \max _{i=1, \ldots, n-1}\left(h_{i}^{2} \max _{t \in\left[x_{i}, x_{i+1}\right]}\left|f^{\prime \prime}(t)\right|\right)
$$

with a small number of nodes. We say the choice of the nodes x_{1}, \ldots, x_{n} is adapted to the behavior of the function f.
One advantage of piecewise linear interpolation is that the behavior of p resembles the behavior of f :

- whereever the function f is increasing/decreasing, we have that the function p is increasing/decreasing However, we have drawbacks:
- the function $p(x)$ is not smooth: it has kinks (jumps of $p^{\prime}(x)$) at the nodes x_{2}, \ldots, x_{n-1} in general
- the error $|f(x)-p(x)| \leq C h_{i}^{2}$ for $x \in\left[x_{i}, x_{i+1}\right]$ only decreases fairly slowly with decreasing spacing h_{i}. We would rather have a higher power like $C h_{i}^{4}$.

Piecewise cubic Hermite interpolation

Both of these drawbacks can be fixed by using a piecewise cubic polynomial $p(x)$.
We assume that we are given

- x_{1}, \ldots, x_{n}
- y_{1}, \ldots, y_{n} where $y_{i}=f\left(x_{i}\right)$
- s_{1}, \ldots, s_{n} where $s_{i}=f^{\prime}\left(x_{i}\right)$

In this case we can construct on each interval $\left[x_{i}, x_{i+1}\right]$ a cubic Hermite polynomial $p_{i}(x)$ with

$$
p_{i}\left(x_{i}\right)=y_{i}, \quad p^{\prime}\left(x_{i}\right)=s_{i}, \quad p\left(x_{i+1}\right)=y_{i+1}, \quad p^{\prime}\left(x_{i+1}\right)=s_{i+1} .
$$

E.g., on the first interval we obtain the following divided difference table: Let $r_{1}:=\frac{y_{2}-y_{1}}{h_{1}}$

$$
\begin{array}{c|cccc}
x_{1} & y_{1} & s_{1} & \frac{r_{1}-s_{1}}{h_{1}} & \frac{s_{2}-2 r_{1}+s_{1}}{h_{1}^{2}} \\
x_{1} & y_{1} & r_{1} & \frac{s_{2}-r_{1}}{h_{1}} & \\
x_{2} & y_{2} & s_{2} & & \\
x_{2} & y_{2} & & &
\end{array}
$$

yielding the following for the interpolating polynomial $p_{1}(x)$ on the interval $\left[x_{1}, x_{2}\right]$:

$$
\begin{array}{lll}
p_{1}(x)=y_{1}+s_{1}\left(x-x_{1}\right)+\frac{r_{1}-s_{1}}{h_{1}}\left(x-x_{1}\right)^{2} & +\frac{s_{2}-2 r_{1}+s_{1}}{h_{1}^{2}}\left(x-x_{1}\right)^{2}\left(x-x_{2}\right) \\
p_{1}^{\prime \prime}(x)= & \frac{r_{1}-s_{1}}{h_{1}} \cdot 2 & +\frac{s_{2}-2 r_{1}+s_{1}}{h_{1}^{2}}\left[2\left(x-x_{2}\right)+4\left(x-x_{1}\right)\right] \\
p_{1}^{\prime \prime}\left(x_{1}\right)= & \frac{r_{1}-s_{1}}{h_{1}} \cdot 2 & +\frac{s_{2}-2 r_{1}+s_{1}}{h_{1}^{2}}\left[-2 h_{1}\right]=\frac{6 r_{1}-4 s_{1}-2 s_{2}}{h_{1}} \\
p_{1}^{\prime \prime}\left(x_{2}\right)= & \frac{r_{1}-s_{1}}{h_{1}} \cdot 2 & +\frac{s_{2}-2 r_{1}+s_{1}}{h_{1}^{2}}\left[4 h_{1}\right]=\frac{-6 r_{1}+2 s_{1}+4 s_{2}}{h_{1}} \tag{4}
\end{array}
$$

(We will need the second derivative later). In the same way we define $p_{i}(x)$ on the interval $\left[x_{i}, x_{i+1}\right]$.
The piecewise cubic Hermite polynomial $p(x)$ is then given by

$$
\begin{equation*}
\text { for } x \in\left[x_{i}, x_{i+1}\right]: \quad p(x)=p_{i}(x) \tag{5}
\end{equation*}
$$

Then we obtain from the error formula for polynomial interpolation with 4 points $x_{i}, x_{i}, x_{i+1}, x_{i+1}$ that

$$
\text { for } x \in\left[x_{i}, x_{i+1}\right]: \quad \begin{aligned}
f(x)-p(x) & =\frac{f^{(4)}(t)}{4!}\left(x-x_{i}\right)^{2}\left(x-x_{i+1}\right)^{2} \\
|f(x)-p(x)| & \leq \frac{1}{24} \max _{t \in\left[x_{i}, x_{i+1}\right]}\left|f^{\prime \prime}(t)\right| \cdot \frac{h_{i}^{4}}{16}
\end{aligned}
$$

since the function $\left|\left(x-x_{i}\right)\left(x-x_{i+1}\right)\right|$ has its maximum $\frac{h_{i}}{2} \cdot \frac{h_{i}}{2}$ in the midpoint of the interval $\left[x_{i}, x_{i+1}\right]$.
We see that the interpolation error satisfies $|f(x)-p(x)| \leq C h_{i}^{4}$ where $C=\frac{1}{24 \cdot 16} \max _{t \in\left[x_{1}, x_{n}\right]}\left|f^{(4)}(t)\right|$. If we choose equidistant points with $h_{i}=(b-a) /(n-1)$ we have $|f(x)-p(x)| \leq C(b-a)^{4} / n^{4}$, i.e., doubling the number of points reduces the error bound by a factor of 16 .
However, if the function $f(x)$ has different behavior on different parts of the interval we can get better results by choosing the points x_{1}, \ldots, x_{n} accordingly: If $\left|f^{(4)}(x)\right|$ is small in a certain region we can use a wider spacing h_{i}; if $\left|f^{(4)}(x)\right|$ is large in another reason we should place the nodes more closely, so that h_{i} is small there. In this way we can achieve a small overall error

$$
\max _{x \in\left[x_{1}, x_{n}\right]}|f(x)-p(x)| \leq \frac{1}{24 \cdot 16} \max _{i=1, \ldots, n-1}\left(h_{i}^{4} \max _{t \in\left[x_{i}, x_{i+1}\right]}\left|f^{(4)}(t)\right|\right)
$$

with a small number of nodes.
Again, a major advantage of using piecewise polynomials is that we can pick a nonuniform spacing of the nodes adapted to the behavior of the function f.
The cubic Hermite spline has the following drawbacks:

- We need the derivatives $s_{i}=f^{\prime}\left(x_{i}\right)$ at all nodes x_{1}, \ldots, x_{n}. In many cases these values are not available.
- We have that $p^{\prime}(x)$ is continuous, but $p^{\prime \prime}(x)$ has jumps at the points x_{2}, \ldots, x_{n-1} in general. We would like to have a smoother function $p(x)$.

Complete cubic spline

The complete cubic spline fixes these two problems. We now assume that we are given

- x_{1}, \ldots, x_{n}
- y_{1}, \ldots, y_{n} where $y_{i}=f\left(x_{i}\right)$
- $s_{1}=f^{\prime}\left(x_{1}\right)$ and $s_{n}=f^{\prime}\left(x_{n}\right)$,
i.e., we only need the derivatives at the endpoints (see the section "Not-a-knot spline" below if these are not available). If these values are given, we can pick arbitrary numbers s_{2}, \ldots, s_{n-1} and obtain with (5) a piecewise cubic function $p(x)$ which interpolates all the given data values.

How should we pick the $n-2$ numbers s_{2}, \ldots, s_{n-1} to obtain a "nice function" $p(x)$? We can actually use this freedom to achieve a function $p(x)$ where $p^{\prime \prime}(x)$ is continuous at the points x_{2}, \ldots, x_{n-1} : We want to pick the $n-2$ numbers x_{2}, \ldots, x_{n-1} such that the $n-2$ equations

$$
\begin{equation*}
p_{i-1}^{\prime \prime}\left(x_{i}\right)=p_{i}^{\prime \prime}\left(x_{i}\right) \quad i=2, \ldots, n-2 \tag{6}
\end{equation*}
$$

are satisfied. E.g., we want that the second derivatives from the left and the right coincide at the point x_{2} : Using (3) and (4) with indices shifted by 1) we get for $i=2$ the equation

$$
\begin{aligned}
p_{1}^{\prime \prime}\left(x_{2}\right) & \stackrel{!}{=} p_{2}^{\prime \prime}\left(x_{1}\right) \\
\frac{-6 r_{1}+2 s_{1}+4 s_{2}}{h_{1}} & =\frac{6 r_{2}-4 s_{2}-2 s_{3}}{h_{2}} \\
\frac{2}{h_{1}} s_{1}+\left(\frac{4}{h_{1}}+\frac{4}{h_{2}}\right) s_{2}+\frac{2}{h_{2}} s_{3} & =6\left(\frac{r_{1}}{h_{1}}+\frac{r_{2}}{h_{2}}\right)
\end{aligned}
$$

Note that the value s_{1} in the first equation and the value s_{n} in the last equation are given, and should therefore be moved to the right hand side. Hence we obtain the tridiagonal linear system (after diving each equation by 2)

$$
\left[\begin{array}{ccccc}
\frac{2}{h_{1}}+\frac{2}{h_{2}} & \frac{1}{h_{2}} & & & \tag{7}\\
\frac{1}{h_{2}} & \frac{2}{h_{2}}+\frac{2}{h_{3}} & \frac{1}{h_{3}} & & \\
& \ddots & \ddots & \ddots & \\
& & \frac{1}{h_{n-3}} & \frac{2}{h_{n-3}}+\frac{2}{h_{n-2}} & \frac{1}{h_{n-2}} \\
& & & \frac{1}{h_{n-2}} & \frac{2}{h_{n-2}}+\frac{2}{h_{n-1}}
\end{array}\right]\left[\begin{array}{c}
s_{2} \\
s_{3} \\
\vdots \\
s_{n-2} \\
s_{n-1}
\end{array}\right]=\left[\begin{array}{c}
3\left(\frac{r_{1}}{h_{1}}+\frac{r_{2}}{h_{2}}\right)-\frac{s_{1}}{h_{1}} \\
3\left(\frac{r_{2}}{h_{2}}+\frac{r_{3}}{h_{3}}\right) \\
\vdots \\
3\left(\frac{r_{n-3}}{h_{n-3}}+\frac{r_{n-2}}{h_{n-2}}\right) \\
3\left(\frac{r_{n-2}}{h_{n-2}}+\frac{r_{n-1}}{h_{n-1}}\right)-\frac{s_{n}}{h_{n-1}}
\end{array}\right]
$$

This gives the following algorithm for finding the cubic spline interpolation:

- for $i=1, \ldots, n-1$: let $h_{i}:=x_{i+1}-x_{i}, r_{i}:=\frac{y_{i+1}-y_{i}}{h_{i}}$
- define the matrix A on the left hand side of (7) and the vector b on the right hand side of (7)
- solve the tridiagonal linear system $A\left[\begin{array}{c}s_{2} \\ \vdots \\ s_{n-1}\end{array}\right]=b$ using Gaussian elimination without pivoting

For a given point $\tilde{x} \in\left[x_{1}, x_{n}\right]$ we evaluate the cubic spline as follows:

- find the interval $\left[x_{i}, x_{i+1}\right]$ containing \tilde{x}
- evaluate $p_{i}(\tilde{x})$ using (2)

In Matlab we can find the complete cubic spline as follows: $\mathrm{yt}=\operatorname{spline}\left(\left[x_{1}, \ldots, x_{n}\right],\left[s_{1}, y_{1}, \ldots, y_{n}, s_{n}\right]\right.$, xt)
Here $x t$ is a vector of points where we want to evaluate the spline, and $y t$ is the corresponding vector of function values.

"Optimal energy" property for complete cubic spline

It turns out that a complete cubic spline gives a "smooth" function $p(x)$ "without large oscillations". In fact, the complete cubic spline is the optimal interpolating curve in a certain sense.

Historically, people constructing ships used thin flexible rulers made of wood (called "splines") to find "smooth curves" passing through given points $\left(x_{i}, y_{i}\right)$. For a thin piece of wood of length L one needs a certain energy to bend it into a curve with curvature $\kappa(s)$ along the arc length $s \in[0, L]$:

$$
E=\int_{s=0}^{L} C \cdot \kappa(s)^{2} d s
$$

Here C is a stiffness constant. If one tries to pass a thin piece of wood through a number of points and allows it to relax it will assume the shape with lowest possible energy E.
If we describe the curve by a function $y=p(x)$ we have for small slopes $p^{\prime}(x)$ that $\kappa(s) \approx p^{\prime \prime}(x)$ and

$$
E \approx E_{0}:=\int_{x=x_{1}}^{x_{n}} C \cdot p^{\prime \prime}(x)^{2} d x .
$$

It turns out that the complete cubic spline is the smoothest possible interpolating function in the following sense:
Among all functions $p(x)$ (not only piecewise polynomials) satisfying

$$
p\left(x_{1}\right)=y_{1}, \ldots, p\left(x_{n}\right)=y_{n}, \quad p^{\prime}\left(x_{1}\right)=s_{1}, \quad p^{\prime}\left(x_{n}\right)=s_{n}
$$

the complete cubic spline has the lowest possible "energy" $\int_{x=x_{1}}^{x_{n}} p^{\prime \prime}(x)^{2} d x$.

Not-a-knot cubic spline

Now assume that we are not given any derivatives values. We are given only x_{1}, \ldots, x_{n} and the function values y_{1}, \ldots, y_{n}. In this case the best way to proceed is as follows: First drop x_{2} and x_{n-1} and consider only the x-values $x_{1}, x_{3}, x_{4}, \ldots, x_{n-3}, x_{n-2}, x_{n}$ with the corresponding y-values. If we pick arbitrary values s_{1}, s_{n} we can find the interpolating cubic spline function $p(x)$ as explained above. The function $p(x)$ is a cubic function on the interval $\left[x_{1}, x_{3}\right]$ given by (2) with index 3 in place of 1 (" x_{2} is not a knot"). Similarly $p(x)$ is a cubic function on the interval $\left[x_{n-2}, x_{n}\right]$ given by (2) with indices $n-2, n$ in place of 1,2 (" x_{n-1} is not a knot").
In order to determine s_{1}, s_{n} we need two additional equations: We get them from the points $\left(x_{2}, y_{2}\right)$ and $\left(x_{n-1}, y_{n-1}\right)$ and require

$$
p\left(x_{2}\right)=y_{2}, \quad p\left(x_{n-1}\right)=y_{n-1}
$$

The first equation depends on s_{1}, s_{3}. The last equation depends on s_{n-2}, s_{n}. We therefore obtain a tridiagonal linear system for the unknowns $s_{1}, s_{3}, s_{4}, \ldots, s_{n-3}, s_{n-2}, s_{n}$. We solve this linear system using Gaussian elimination without pivoting and obtain a cubic spline function called the "not-a-not cubic spline".
In Matlab we can find the not-a-knot cubic spline as follows: yt $=\operatorname{spline}\left(\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right], \mathrm{xt}\right)$
Here xt is a vector of points where we want to evaluate the spline, and yt is the corresponding vector of function values.

