
Ordinary Differential Equations

1 Introduction: first order ODE

We are given

• a function f(t, y) which describes a “direction field” in the (t, y) plane

• an initial point (t0, y0)

We want to find a function y(t) for t ∈ [t0, T] such that

• y(t0) = y0 “initial condition”

• y′(t) = f(t, y(t)) for t ∈ [t0, T] “ordinary differential equation” (ODE)

This is called an initial value problem (IVP).

The partial derivative fy(t, y) =
∂f

∂y
(t, y) is important for the behavior of the differential equation.

Theorem 1.1. Assume that f(t, y) and fy(t, y) are continuous for t ∈ [t0, T], y ∈ R.

For a given initial value y0 there is a unique solution y(t) of the initial value problem. Either the solution exists

for all t ∈ [0, T], or it only exists on a smaller interval [t0, t∗) with t0 < t∗ < T .

We can solve the IVP in Matlab with ode45:

f = @(t,y) ... % define function f(t,y)

[ts,ys] = ode45(f,[t0,T],y0); % find column vectors ts,ys with values of solution

ys(end) % value y(T) of solution

plot(ts,ys) % plot solution

Example: Find a function y(t) for t ∈ [−1, 3] such that

y′(t) = t− y(t)2

y(−1) = 0

Here we have t0 = −1, y0 = 0, f(t, y) = t− y2.

Numerical solution in Matlab: (using m-file dirfield.m from course web page)

f = @(t,y) t-y^2 % define function f(t,y)

dirfield(f, -1:.2:3, -1:.2:1.6); hold on % plot direction field

[ts,ys] = ode45(f,[-1,3],0); % solve IVP for t from -1 to 3, initial value 0

% this gives vectors ts,ys

plot(ts,ys,’b’); hold off % plot solution

1

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

1.5

What happens if we perturb the initial value y0?

Theorem 1.2. Let y(t) denote the solution of the IVP with initial condition y(t0) = y0, let ỹ(t) denote the

solution of the IVP with initial condition ỹ(t0) = ỹ0. Assume fy(t, y) ≤ M for t ∈ [t0, T], y ∈ R. Then

|ỹ(t)− y(t)| ≤ |ỹ0 − y0| e
M(t−t0) for t ∈ [t0, T]

For M < 0 the difference |ỹ(t)− y(t)| decays exponentially for increasing t. For M > 0 the difference may
increase exponentially.

We call the ODE unstable if we have fy(t, y) > 0 for all t ∈ [t0, T], y ∈ R.

We call the ODE stable if we have fy(t, y) < 0 for all t ∈ [t0, T], y ∈ R.

2 System of ODEs, higher order ODEs

We want to find n functions y1(t), . . . , yn(t) for t ∈ [t0, T] satisfying the differential equations

y′1(t) = f1 (t, y1(t), . . . , yn(t))

...

y′n(t) = fn (t, y1(t), . . . , yn(t))

and the initial conditions y1(t0) = y
(0)
1 , . . . , yn(t0) = y

(0)
n .

We use vector notation: E.g., for n = 2 we want to find ~y(t) =

[

y1(t)

y2(t)

]

such that

[

y′1(t)

y′2(t)

]

=

[

f1 (t, y1(t), y2(t))

f2 (t, y1(t), y2(t))

]

,

[

y1(t0)

y2(t0)

]

=

[

y
(0)
1

y
(0)
2

]

~y′(t) = ~f (t, ~y(t)) , ~y(t0) = ~y(0)

2

We will omit the vector arrows from now on.

We denote by Dyf(t, y) the Jacobian of f(t, y) with respect to y:

Dyf(t, y) =







∂f1
∂y1

· · · ∂f1
∂yn

...
...

∂fn
∂y1

· · · ∂fn
∂yn







It is important for the behavior of the differential equation.

Theorem 2.1. Assume that f(t, y) and Dyf(t, y) are continuous for t ∈ [t0, T], y ∈ R
n.

For a given initial value y(0) there is a unique solution y(t) of the initial value problem. Either the solution exists

for all t ∈ [0, T], or it only exists on a smaller interval [t0, t∗) with t0 < t∗ < T .

We can solve the IVP in Matlab with ode45: For n = 2 we use

f = @(t,y) [... ; ...] % define function f(t,y) using t, y(1), y(2)

[ts,ys] = ode45(f,[t0,T],y0); % find column vector ts, array ys with values of solution

ys(end,:) % values y1, y2 at final time T

plot(ts,ys(:,1)) % plot solution y1(t)

2nd order ODE

So far the differential equations only contained the first derivative y′(t). But in many applications (e.g. Newton’s
law) we have differential equations containing y′′(t). We then need initial conditions for y(t0) and y′(t0).

We can rewrite this as a first order system: Let y1(t) := y(t) and y2(t) := y′(t). Then we have y′1 = y2 and
y′2 = · · · where we solve the 2nd order ODE for y′′.

Example: Find a function y(t) for t ∈ [0, 4] such that

y′′(t)− y′(t) + 3y(t) = t (1)

y(0) = 1, y′(0) = −2 (2)

This gives the first order system
[

y′1
y′2

]

=

[

y2

t+ y2 − 3y1

]

,

[

y1(0)

y2(0)

]

=

[

−1

2

]

(3)

Numerical solution in Matlab: Print out y(T) and plot the function y(t)

f = @(t,y) [y(2); t+y(2)-3*y(1)]; % define function f(t,y)

[ts,ys] = ode45(f,[0,4],[-1;2]); % solve IVP for t from 0 to 4, initial value [-1;2]

finalval = ys(end,1) % value of y1 at final time T

plot(ts,ys(:,1)); % plot solution y1(t)

3 Euler method

Consider a first order system of ODEs: We want to find y(t) for t ∈ [t0, T] such that

y′(t) = f (t, y(t)) , y(t0) = y(0)

For the Euler method we divide the interval [t0, T] into N subintervals of equal length h = (T − t0)/N (we can
also use subintervals of different length). Let tj = t0 + jh. We then want to find approximations y(1), . . . , y(N)

for y(tj).

3

• start at the initial value t0, y
(0)

• for k = 0, . . . , N − 1 do
s := f(tk, y

(k))
y(k+1) := y(k) + hs
tk+1 := tk + h

Example: Consider the Initial Value Problem (1), (2). Use 2 steps of the Euler method with h = 1
2 to find

approximations for y(1) and y′(1).
We use y1(t) := y(t) and y2(t) = y′(t) and obtain the first order ODE (3).

Step 1: s = f(t0, y
(0)) = f

(

0,

[

−1

2

])

=

[

2

5

]

, y(1) = y(0) + h · s =

[

−1

2

]

+ 1
2 ·

[

2

5

]

=

[

0

4.5

]

Step 2: s = f(t1, y
(1)) = f

(

1
2 ,

[

0

4.5

])

=

[

4.5

5

]

, y(2) = y(1) + h · s =

[

0

4.5

]

+ 1
2 ·

[

4.5

5

]

=

[

2.25

7

]

This gives y(1) ≈ 2.25 and y′(1) ≈ 7.

Errors for Euler method

We consider the case n = 1. At time tk the Euler method gives an approximation yk for the exact value y(tk).
We denote the error by

ek := yk − y(tk)

By Taylor’s theorem we have with a remainder term rk = 1
2y

′′(τk)h
2

y(tk+1) = y(tk) + h ·

y′(tk)
︷ ︸︸ ︷

f (tk, y(tk))+rk

yk+1 = yk + h · f(tk, yk)

The second equation is just the definition of the Euler approximation yk+1. Subtracting the first from the second
equation gives

ek+1 = ek + h · [f(tk, yk)− f(tk, y(tk))]− rk

Using the mean value theorem for g(y) := f(tk, y)

f(tk, yk)− f(tk, y(tk)) = fy(tk, ηk) · [yk − y(tk)] ,

hence the new error is
ek+1 = [1 + hfy(tk, ηk)]

︸ ︷︷ ︸

ak

ek − rk

with the amplification factor ak = 1 + hfy(tk, ηk) and the local truncation error rk = 1
2y

′′(τk)h
2.

For an unstable ODE we have fy(t, y) > 0 and hence ak > 1.

For a stable ODE we have fy(t, y) < 0 and hence ak < 1. However, in this case we want |ak| < 1, i.e.,

−1 < 1 + hfy(t, y) < 1

The right inequality is true for any h > 0. The left inequality is true if the following stability condition holds:

h <
2

−fy

4

(1) General case:

We assume

|fy(t, y)| ≤ C1 for t ∈ [t0, T], y ∈ R
∣
∣y′′(t)

∣
∣ ≤ C2 for t ∈ [t0, T]

Then we get bounds |ak| ≤ A for the amplification factor and |rk| ≤ R for the local truncation error:

|ak| = |1 + hfy(tk, ηk)| ≤ 1 + hC1 =: A

|rk| =

∣
∣
∣
∣

1

2
y′′(τk)h

2

∣
∣
∣
∣
≤

C2

2
h2 =: R

yielding
|ek+1| ≤ A |ek|+R

Since |e0| = 0 we obtain

|e1| ≤ R

|e2| ≤ AR+R = (1 +A)R

|e3| ≤ A(1 +A)R+R =
(
1 +A+A2

)
R

...

|ek| ≤
(

1 +A+ · · ·+Ak−1
)

R (4)

We have for the geometric series

1 +A+ · · ·+Ak−1 =
Ak − 1

A− 1
≤

Ak

A− 1
=

(1 + hC1)
k

hC1

The function ex satisfies 1 + x ≤ ex, hence with x = hC1 we get 1 + hC1 ≤ ehC1 . Using this and R = C2

2 h2

in (4) gives the error bound

|yk − y(tk)| ≤
C2

2C1
eC1(tk−t0)h

This shows:

• if we keep taking Euler steps with a fixed value h for t → ∞ the error can increase exponentially. This is
not surprising: For an unstable ODE any tiny initial error can cause an exponentially increasing error for
t → ∞.

• if we only want to find the solution for t ∈ [t0, T]: We use h = T−t0
N

and obtain errors bounded by
ch = c′N−1: The Euler method is a method of order 1.

Example: The initial value problem

y′ = y − sin t− cos t, y(0) = 1

has the solution y(t) = cos t. Here fy(t, y) = 1 > 0. We use the Euler method with h = 0.1:

f = @(t,y) y-sin(t)-cos(t)

tv = 0:.1:5; plot(tv,cos(tv),’b’); hold on % plot exact solution

dirfield(f,0:.3:5,-1:.2:3);

[ts,ys] = Euler(f,[0,5],1,50); % use 50 steps of size 5/50

plot(ts,ys,’r.-’); hold off

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

We see that the Euler values go exponentially to +∞ as t gets larger than 4, whereas the exact solution
y(t) = cos t stays bounded.

(2) Special case: Stable ODE where h satisfies stability condition:

We assume fy(t, y) < 0: We have C1 ≥ C0 > 0 such that

−C1 ≤ fy(t, y) ≤ −C0 for t ∈ [t0, T], y ∈ R
∣
∣y′′(t)

∣
∣ ≤ C2 for t ∈ [t0, T]

We now want to have an amplification factor with |ak| ≤ 1− C0h, i.e.,

−(1− C0h) ≤ 1 + hfy(tk, ηk) ≤ 1− C0h

The right inequality holds for any h > 0. We have 1− hC1 ≤ 1 + hfy(tk, ηk), therefore the left inequality holds
if −(1− C0h) ≤ 1− hC1 or

h ≤
2

C0 + C1
(5)

If h satisfies this stability condition we have |ak| ≤ 1− C0h =: A < 1, hence

1 +A+ · · ·+Ak−1 =
1−Ak

1−A
≤

1

1−A

and (4) now gives

|yk − y(tk)| ≤
C2

2C0
h

This shows:

• if we keep taking Euler steps with a fixed value h for t → ∞ the error is bounded by Ch with a fixed
constant C.

Example: The initial value problem

y′ = −y − sin t+ cos t, y(0) = 1

has the solution y(t) = cos t. Here fy(t, y) = −1 < 0. We use the Euler method with h = 0.2:

6

f = @(t,y) -y-sin(t)+cos(t)

tv = 0:.1:10; plot(tv,cos(tv),’b’); hold on % plot exact solution

dirfield(f,0:.3:10,-1.1:.2:1.1);

[ts,ys] = Euler(f,[0,10],1,50); % use 50 steps of size 10/50

plot(ts,ys,’r.-’); hold off

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

Here we have an error of size Ch, but the error stays bounded as t → ∞.

4 Improved Euler method (aka RK2 method)

For the Euler method we obtained a local truncation error rk satisfying |rk| ≤ ch2. Since we use N =
(T − t0)/h steps to get from t0 to the final time T , we obtained the error at time T was bounded by Ch1:
The Euler method is a method of order 1. This means that in order to improve the error by a factor of 10,
we need to use 10 times as many steps. If we want to achieve an error of size 10−8 we may need of the order of
108 steps (assuming e.g. a stable problem with C2 and C0 of about 1).

We would like to have a method of order 2, i.e., the error at time T is bounded by Ch2. This means that the
local truncation error should satisfy |rk| ≤ ch3. How can we do this? We need more than one evaluation of the
direction field per step.

We start at the initial point (t0, y0). We take a step of size h to t1 = h and want to find an approximation y1
for y(t1). We know that y′(t) = f (t, y(t)), so by the fundamental theorem of calculus we have

y(t1) = y0 +

∫ t1

t0

f (t, y(t)) dt

Let g(t) := f (t, y(t)). Then we have to approximate the integral I =

∫ t1

t0

g(t)dt with an error≤ ch3. One way

to do this is to use the trapezoid rule: Recall that on an interval of size h we have
∣
∣QTrap − I

∣
∣ ≤ h3

12 max |g′′|.
Therefore we want to use

I ≈ QTrap =
h

2
[g(t0) + g(t1)] =

h

2

[

f(t0, y0) + f(t1, y(t1)
︸ ︷︷ ︸

?

)
]

But we cannot evaluate the second term f(t1, y(t1)) since we don’t know y(t1). So we use the best approximation
we have: the Euler approximation yEuler = y0+h · f(t0, y0) . Since

∣
∣yEuler − y(t1)

∣
∣ ≤ Ch2 we get from the mean

value theorem
∣
∣f(t1, y

Euler)− f(t1, y(t1))
∣
∣ =

∣
∣
∣
∣

∂f

∂y
(t1, η) ·

(
yEuler − y(t1)

)
∣
∣
∣
∣
≤ C1 · Ch2

7

We now approximate y(t1) by

y1 := y0 +
h

2

[

f(t0, y0) + f(t1, y
Euler)

]

(6)

and obtain for the local truncation error
|y1 − y(t1)| ≤ Ch3

since the error of the trapezoid rule is bounded by ch3, and replacing y(t1) by yEuler causes an additional error
h
2C1Ch2.

The iteration (6) gives the Improved Euler method: we divide the interval [t0, T] into N subintervals of equal
length h = (T − t0)/N (we can also use subintervals of different length). Let tj = t0 + jh. We then want to find
approximations y(1), . . . , y(N) for y(tj).

• start at the initial value t0, y
(0)

• for k = 0, . . . , N − 1 do
s(1) := f(tk, y

(k))
yE := y(k) + hs(1)

s(2) := f(tk + h, yE)
y(k+1) := y(k) + 1

2

[
s(1) + s(2)

]

tk+1 := tk + h

The local truncation error of the improved Euler method is of order O(h3). Hence the error at a time t = T is
of order O(h2) = O(N−2): The improved Euler method is a method of order 2. Note that we use two
evaluations of the function f per step: s(1) = f(tk, y

(k)) and s(2) = f(tk + h, yE).

Example: Consider the Initial Value Problem (1), (2). Use 1 step of the Improved Euler method with h = 1
2

to find approximations for y(12) and y′(12).
We use y1(t) := y(t) and y2(t) = y′(t) and obtain the first order ODE (3).
s(1) = f(t0, y

(0)) = f
(
0,
[
−1
2

])
= [25], y

E = y(0) + h · s =
[
−1
2

]
+ 1

2 · [25] = [0
4.5]

s(2) = f(t1, y
E) = f

(
1
2 , [

0
4.5]
)
= [4.55], y(1) = y(0) +

h

2

(

s(1) + s(2)
)

=
[
−1
2

]
+ 1

4 ([
2
5] + [4.55]) = [0.6254.5]

This gives y(12) ≈ 0.625 and y′(12) ≈ 4.5.

5 Stiff ODE and ode15s

Consider a “very stable” ODE where fy(t, y) is very negative. Then the Euler method only works if the step size

h satisfies the stability condition h <
2

−fy
. This can force use to use very tiny steps even if the solution y(t) is

almost constant. This is called a stiff ODE. In this case ode45 uses many tiny steps and takes a long time.

Example: A flame propagation model gives the following IVP:

y′ = y2 − y3 for t ∈ [0,
2

δ
]

y(0) = δ

Here δ is very small, e.g., δ = 10−4. In this case we want to solve the problem for t ∈ [0, 2
δ
] = [0, 2 · 104]. The

solution approaches y = 1. But there the problem becomes stiff: We have near y = 1 that fy(t, y) = 2y− 3y2 ≈

−1, so the stability condition for the Euler method requires h <
2

−fy
= 2. This means that we need N = 104

steps of size h = 2 to get from t0 = 0 to T = 2/δ, despite the fact that the solution is almost constant for most
of [0, T].

The adaptive method ode45 (with default settings) also requires about 104 steps:

8

delta = 1e-4;

f = @(t,y) y^2-y^3;

y0 = delta;

t0 = 0; T = 2/delta;

[ts,ys] = ode45(f,[0,T],y0);

length(ts) % print number of steps

This prints out 12113 for the number of steps.

Matlab has a special ode solver ode15s for stiff ODEs: We try this for our problem

[ts,ys] = ode15s(f,[0,T],y0);

length(ts) % print number of steps

and get 108 for the number of steps.

6 Backward Euler method (aka implicit Euler method)

For stable problems the Euler method gives magnification factors |ak| = |1 + hfy| < 1 for small h, but |ak| =
|1 + hfy| > 1 for large h.

If I look at a problem with fy < 0 from right to left with decreasing t, then an Euler method in decreasing t
direction always has a magnification factor |a| > 1, for any step size h > 0.

This suggests to use a “backward Euler step”:

At time tk we have the value y(k).

For time tk+1 = tk + h we want to find a value y(k+1) such that an Euler step to the left takes us to tk and y(k):

Find y(k+1) such that

y(k+1) − h · f
(

tk+1, y
(k+1)

)

= y(k) (7)

Note that the unknown vector y(k+1) occurs also inside the function f . If the function f(t, y) is linear in y this
gives linear equations for y. If the function f(t, y) is nonlinear in y this gives nonlinear equations for y. We can
e.g. use 1 or 2 steps of the Newton method (note that we have a local truncation error of size O(h2)).

Example: Consider the Initial Value Problem (1), (2). Use 1 step of the backward Euler method with h = 1
2

to find approximations for y(12) and y′(12).
We use y1(t) := y(t) and y2(t) = y′(t) and obtain the first order ODE (3). Note that the function f(t, y) =
[

y2

t+ y2 − 3y1

]

depends linearly on y1, y2.

We want to find a vector y(1) =

[

y1

y2

]

such that

[y1y2]− h · f(t1, [
y1
y2]) = y(0)

[

y1

y2

]

− 1
2

[

y2
1
2 + y2 − 3y1

]

=

[

−1

2

]

This gives the linear system

[

y1 −
1
2y2

3
2y1 +

1
2y2

]

=

[

−1

2.25

]

which has the solution y(1) =

[

y1

y2

]

=

[
1
2

3

]

. This

gives y(12) ≈ 0.5 and y′(12) ≈ 3.

Claim: Let n = 1. For a stable problem with fy(t, y) < 0 the nonlinear equation has a unique solution.
Proof: The left hand side F (yk+1) := yk+1 − h · f(tk+1, yk+1) is strictly increasing for increasing yk+1, with
F (y) → −∞ for y → −∞ and F (y) → ∞ for y → ∞.

9

