Ordinary Differential Equations

1 Introduction: first order ODE

We are given
e a function f(t,y) which describes a “direction field” in the (¢,y) plane
e an initial point (%o, yo)
We want to find a function y(¢) for t € [tg, T] such that
e y(to) = o “initial condition”
e y/(t) = f(t,y(t)) for t € [to, T] “ordinary differential equation” (ODE)
This is called an initial value problem (IVP).

0
The partial derivative fy(t,y) = 8—f(t, y) is important for the behavior of the differential equation.
Y

Theorem 1.1. Assume that f(t,y) and fy(t,y) are continuous fort € [to,T], y € R.
For a given initial value yo there is a unique solution y(t) of the initial value problem. Either the solution exists
for all t € [0,T], or it only exists on a smaller interval [to,ts) with to < t. < T.

We can solve the IVP in Matlab with ode45:

f=a@(t,y) % define function f(t,y)
[ts,ys] = oded5(f,[t0,T],y0); % find column vectors ts,ys with values of solution
ys(end) % value y(T) of solution

o®

plot(ts,ys) plot solution

Example: Find a function y(¢) for ¢ € [—1, 3] such that

y'(t)
y(=1)

y(t)?

t—
0

Here we have tg = —1, yo = 0, f(t,y) =t — y>.
Numerical solution in Matlab: (using m-file dirfield.m from course web page)

f=q@(t,y) t-y™2
dirfield(f, -1:.2:3, -1:.2:1.6); hold on
[ts,ys] = oded45(f,[-1,3],0);

o°

define function f(t,y)

plot direction field

solve IVP for t from -1 to 3, initial value 0
this gives vectors ts,ys

plot solution

o° o°

o°

plot(ts,ys,'b’); hold off

o°

15_\\\\\\\\\\\\\'\\\\\—/)
N N N N N N N N N N N N
VN N N N N NN a4
TN N N N N NN /T
N\ \\N\NN~—~———) AV,
I NNNNSN~———— S S S S]
AN NN S S
AN / /)
0 NN S LSS T
AN / /S
o5 LN N 207/ /1 /]
NN\ 7SS S
NN N\ S0 00077/
AN NANNNNN~N~————~ ~ S))) /-
-1 -0.5 0 0.5 1 1.5 2 2.5 3

What happens if we perturb the initial value yq?

Theorem 1.2. Let y(t) denote the solution of the IVP with initial condition y(to) = yo, let §(t) denote the
solution of the IVP with initial condition §(to) = Jo. Assume | fy(t,y) < M| fort € [to,T], y € R. Then

15(t) — y(t)| < |go — yo| M=) for t € [to, T

For M < 0 the difference |y(t) — y(t)| decays exponentially for increasing t. For M > 0 the difference may
increase exponentially.

We call the ODE unstable if we have | f,(¢,y) > 0| for all ¢t € [to, T], y € R.

We call the ODE stable if we have | f,(¢t,y) < 0| for all ¢t € [to,T], y € R.

2 System of ODEs, higher order ODEs

We want to find n functions y1(t),...,yn(t) for t € [ty, T] satisfying the differential equations

Y1) = fi(t,y1 (@), ..., yn())

y’;l/(t) = fn (t7y1(t)7 R 7yn(t))

and the initial conditions y; (tg) = y%o), o yn(to) = yéo).

We use vector notation: E.g., for n = 2 we want to find y(t) = [u Eg] such that
Y2

(1)] _ [Fu (1), 20] [i (to)] [o]
Yo (t) 2 (8, 91(1), (1)) Yo (to) 0
y

7(t) = f(tg), (to) = 7

We will omit the vector arrows from now on.

We denote by D, f(t,y) the Jacobian of f(t,y) with respect to y:

onh ... 9h
8yl 6yn
Dyf(t’ y) =
Ofn .. Ofn
oY1 OYn

It is important for the behavior of the differential equation.

Theorem 2.1. Assume that f(t,y) and Dy f(t,y) are continuous for t € [to,T], y € R™.
For a given initial value y(©) there is a unique solution y(t) of the initial value problem. Either the solution exists
for allt € [0,T], or it only exists on a smaller interval [to,t.) with to < t, <T.

We can solve the IVP in Matlab with oded45: For n = 2 we use

f=@(t,y) [... ; ... 1 % define function f(t,y) using t, y(1), y(2)
[ts,ys] = oded5(f,[t0,T],y0); % find column vector ts, array ys with values of solution
ys(end, :) % values yl, y2 at final time T

o°

plot(ts,ys(:,1)) plot solution yl(t)

2nd order ODE

So far the differential equations only contained the first derivative y'(¢). But in many applications (e.g. Newton’s
law) we have differential equations containing y”(¢). We then need initial conditions for y (o) and y'(to).

We can rewrite this as a first order system: Let y;(¢) := y(¢) and y2(¢) := v/(t). Then we have v} = y2 and
yh = -+ where we solve the 2nd order ODE for y".

Example: Find a function y(¢) for ¢ € [0, 4] such that

y'(t) =y (t) + 3y(t) =t (1)
y(0)=1, y(0)=-2 (2)
This gives the first order system
AR O Y R
Yo t+y2 — 3y y2(0) 2

Numerical solution in Matlab: Print out y(7") and plot the function y(t)

f=@(t,y) [y(2); t+y(2)-3xy(1)]; % define function f(t,y)

[ts,ys] = oded5(f,[0,4]1,[-1;2]); solve IVP for t from O to 4, initial value [-1;2]
finalval = ys(end,1) value of yl at final time T

plot(ts,ys(:,1)); plot solution yl(t)

o® o°

o

3 Euler method

Consider a first order system of ODEs: We want to find y(¢) for ¢ € [tg, T] such that
y'(t)=fty®), ylto) =y

For the Euler method we divide the interval [ty, 7] into N subintervals of equal length h = (T'—ty)/N (we can
also use subintervals of different length). Let ¢t; = ¢ty + jh. We then want to find approximations y O,y

for y(t;).

e start at the initial value ¢g,y©

o for k=0,...,N—1do
s == f(tr,y™)
y(k+1) = y(k) + hS
trit = tp + b
Example: Consider the Initial Value Problem (1), (2). Use 2 steps of the Euler method with h = 3 to find

approximations for y(1) and y/(1).
We use y1(t) := y(t) and ya(t) = ¢/(t) and obtain the first order ODE (

(3).
s 10 st =5 (0 5|)= [3o +’”—l 3]0
e ol B R SRR M Y I R

This gives y(1) ~ 2.25 and y/(1) ~ 7.

Errors for Euler method

We consider the case n = 1. At time ¢; the Euler method gives an approximation y; for the exact value y(ty).
We denote the error by

er = yr — y(tx)
By Taylor’s theorem we have with a remainder term rp = %y”(Tk)hQ
/
y (tr)

—
Y(try1) = y(te) + b f (te, y(tr)) +r
Ykt1 =Y+ b f(te, yi)

The second equation is just the definition of the Euler approximation yi41. Subtracting the first from the second
equation gives
ekt = ep + h- [f(tksye) — f(te, y ()] — 16

Using the mean value theorem for ¢g(y) := f(t,y)

ey ye) — fte, y(te) = fyCte,ne) - Ty — y(te)] s

hence the new error is

epr1 = [1+ hfy(te,)] er — 7k

af

with the amplification factor a; = 1 + hfy,(tx, nr) and the local truncation error r;, = %y”(rk)h2.
For an unstable ODE we have f,(t,y) > 0 and hence aj, > 1.

For a stable ODE we have f,(t,y) < 0 and hence a; < 1. However, in this case we want |a;| < 1, i.e.,
—1<1+nhfy(ty) <1

The right inequality is true for any h > 0. The left inequality is true if the following stability condition holds:

2
h < —-

_fy

(1) General case:

We assume

|fy(ty)| < C
' (#)] < Co

fort € [to,T], y € R
fort € [to, T

Then we get bounds |ai| < A for the amplification factor and || < R for the local truncation error:

\ak\ = ’1 +hfy(tk,’l7k)| <1+ h01 = A

1 C
il = ’y”(mhz <= R
2 2
yielding
k1| < Alex| + R
Since |eg| = 0 we obtain
le1] <R
leo] AR+ R=(1+A)R

les] <A1+ AR+R=(1+A+A*)R

|ek\§(1+A+---+Ak_1)R (4)
We have for the geometric series
Ak —1 AP (14 hCy)F
14+ A4 ...+ AF1 = < —
FATeE A1 A1 G

The function e® satisfies 1 + z < e*, hence with z = hC} we get 1 + hC; < 1. Using this and R = %hQ

in (4) gives the error bound

ke — y(tr)|

Cy C1(tp—to)
<7 1\lk Oh
_2016

This shows:

o if we keep taking Euler steps with a fixed value h for ¢ — oo the error can increase exponentially. This is
not surprising: For an unstable ODE any tiny initial error can cause an exponentially increasing error for

t — oo.

e if we only want to find the solution for ¢ € [tg,T]: We use h = % and obtain errors bounded by
ch = ¢ N~!: The Euler method is a method of order 1.

Example: The initial value problem

Yy =y —sint — cost,

y(0) =1

has the solution y(t) = cost. Here f,(t,y) =1 > 0. We use the Euler method with A = 0.1:

f =@(t,y) y-sin(t)-cos(t)

tv = 0:.1:5; plot(tv,cos(tv),’b’); hold on
dirfield(f,0:.3:5,-1:.2:3);

[ts,ys] = Euler(f,[0,5],1,50);
plot(ts,ys,'r.-"); hold off

% plot exact solution

% use 50 steps of size 5/50

'1'| 1 1 I 1 1 1 I 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

We see that the Euler values go exponentially to 400 as t gets larger than 4, whereas the exact solution
y(t) = cost stays bounded.

(2) Special case: Stable ODE where § satisfies stability condition:
We assume fy(t,y) < 0: We have C; > Cy > 0 such that

_Cl < fy(t y)
|y" (1)

< —Cy forte [ty,T], yeR
< Cy fort € [to,T]
We now want to have an amplification factor with |ax| <1 — Cyh, i.e.,

—(1 = Coh) <1+ hfy(te,m) <1—Coh

The right inequality holds for any h > 0. We have 1 — hCy < 1+ hfy(tg,nx), therefore the left inequality holds
if —(1 —Cph) <1—hCj or

2
h< ——— 5
— Co+Cy (5)

If h satisfies this stability condition we have |ag| < 1 — Cph =: A < 1, hence

1 — Ak 1

k-1 _ <
1+A+ + A —A51-a

and (4) now gives

(s
_ <
lye — y(ts)] 2Cy L

This shows:

o if we keep taking Euler steps with a fixed value h for ¢t — oo the error is bounded by Ch with a fixed
constant C.

Example: The initial value problem

/

y = —y —sint + cost, y(0) =1

has the solution y(t) = cost. Here fy(t,y) = —1 < 0. We use the Euler method with h = 0.2:

f =@(t,y) -y-sin(t)+cos(t)

tv = 0:.1:10; plot(tv,cos(tv),’'b’); hold on % plot exact solution
dirfield(f,0:.3:10,-1.1:.2:1.1);

[ts,ys] = Euler(f,[0,10],1,50); % use 50 steps of size 10/50
plot(ts,ys,’'r.-"); hold off

Here we have an error of size Ch, but the error stays bounded as t — oc.

4 Improved Euler method (aka RK2 method)

For the Euler method we obtained a local truncation error r; satisfying |rp| < ch?. Since we use N =
(T — to)/h steps to get from ¢y to the final time 7', we obtained the error at time T was bounded by Ch':
The Euler method is a method of order 1. This means that in order to improve the error by a factor of 10,
we need to use 10 times as many steps. If we want to achieve an error of size 10~® we may need of the order of
108 steps (assuming e.g. a stable problem with Cy and Cj of about 1).

We would like to have a method of order 2, i.e., the error at time 7" is bounded by Ch?. This means that the
local truncation error should satisfy |rg| < ch®. How can we do this? We need more than one evaluation of the
direction field per step.

We start at the initial point (¢g,yo). We take a step of size h to t; = h and want to find an approximation y;
for y(t1). We know that v'(t) = f (¢t,y(t)), so by the fundamental theorem of calculus we have

t1

y(t1) = yo + t f(tyt))dt

t1
Let g(t) := f (t,y(t)). Then we have to approximate the integral I = / g(t)dt with an error< ch®. One way
to
to do this is to use the trapezoid rule: Recall that on an interval of size h we have ‘QTrap -1 ‘ < % max |g
Therefore we want to use

//’

T ~ QTrap —

N | >

h
lg(to) + 9(t2)] = 5 | F(to.30) + F(t2,y(11))]
~—
?
But we cannot evaluate the second term f(t1,y(¢1)) since we don’t know y(¢1). So we use the best approximation

we have: the Euler approximation y™"e" = yo + h - f(to,y0) . Since }yEuler — y(tl)‘ < Ch? we get from the mean
value theorem

| f(t1, ™) = f 8, y(0))] = ‘g‘;(hw) (P — ?J(tl))‘ <C-Ch?

We now approximate y(¢1) by

h
Bty [f(to, o) + f(t1, yEuler)] (6)

and obtain for the local truncation error
ly1 — y(t1)] < CR?

Euler

since the error of the trapezoid rule is bounded by ch?®, and replacing y(¢1) by ¥y causes an additional error

hovon?.

The iteration (6) gives the Improved Euler method: we divide the interval [tg, T] into N subintervals of equal
length h = (T'—t9)/N (we can also use subintervals of different length). Let t; = to + jh. We then want to find
approximations y™, ...,y for y(t)).

e start at the initial value ¢g,y©

ofork—O —ldo

f(tk y®))
=y s

y(k+1) =y 4 1 [8(1) + 8(2)]

tk+1 = tk + h
The local truncation error of the improved Euler method is of order O(h?®). Hence the error at a time t = T is
of order O(h?) = O(N~2): The improved Euler method is a method of order 2. Note that we use two
evaluations of the function f per step: s(t) = f(tk,y(k)) and s = f(t;, + h,y*).

Example: Consider the Initial Value Problem (1), (2). Use 1 step of the Improved Euler method with h = 1
to find approximations for y(1) and /().

We use y1(t) := y(t) and yg() =19'(t) and obtain the first order ODE (3).

st = f(to,y"”) = 1 (0, [) =031y =y O +heos=[3] +5 3] =[5]
SO = ftn, ") = (L 10]) = [%7], gD = y© 4 g <5<1> +$<2>) e

This gives y(1) ~ 0.625 and y'(5) ~ 4.5.

[
4.

Nl= —
i
[=
~~
SN

>
w
-
-
—
o
=N
R
a
-

5 Stiff ODE and odelbs

Consider a “very stable” ODE where f,(t,y) is very negative. Then the Euler method only works if the step size

h satisfies the stability condition h < ——. This can force use to use very tiny steps even if the solution y(t) is
—Jy

almost constant. This is called a stiff ODE. In this case ode45 uses many tiny steps and takes a long time.

Example: A flame propagation model gives the following IVP:

y =y? - fort € [0, %]

y(0) =19
Here § is very small, e.g., § = 10~%. In this case we want to solve the problem for ¢ € [0, 2] = [0,2 - 10*]. The
solution approaches y = 1. But there the problem becomes stiff: We have near y = 1 that fy (t,y) = 2y — 3y% =~
—1, so the stability condition for the Euler method requires h < _i = 2. This means that we need N = 10*

y
steps of size h = 2 to get from ty = 0 to T' = 2/0, despite the fact that the solution is almost constant for most
of [0,T7.

The adaptive method ode45 (with default settings) also requires about 10* steps:

delta = le-4;

f =a@(t,y) y*2-y*3;

y0 = delta;

t0 = 0; T = 2/delta;

[ts,ys] = ode45(f,[0,T],y0);

length(ts) % print number of steps

This prints out 12113 for the number of steps.

Matlab has a special ode solver odel5s for stiff ODEs: We try this for our problem
[ts,ys] = odel5s(f,[0,T],y0);
length(ts) % print number of steps

and get 108 for the number of steps.

6 Backward Euler method (aka implicit Euler method)

For stable problems the Euler method gives magnification factors |ay| = |1 + hfy| < 1 for small h, but |az| =
11+ hfy| > 1 for large h.

If T look at a problem with f, < 0 from right to left with decreasing ¢, then an Euler method in decreasing ¢
direction always has a magnification factor |a| > 1, for any step size h > 0.

This suggests to use a “backward Euler step”™

At time ¢;, we have the value y(*).

For time t;1 = t; + h we want to find a value y(k“) such that an Euler step to the left takes us to ¢, and y(k):
Find y**! such that

y) — . f (tk+17 :U(k+l>> = y(®) 9

Note that the unknown vector y occurs also inside the function f. If the function f(¢,y) is linear in y this
gives linear equations for y. If the function f(¢,y) is nonlinear in y this gives nonlinear equations for y. We can
e.g. use 1 or 2 steps of the Newton method (note that we have a local truncation error of size O(h?)).

Example: Consider the Initial Value Problem (1), (2). Use 1 step of the backward Euler method with h = 3
to find approximations for y(1) and y/(3).
We use y1(t) := y(t) and ya2(t) = y'(t) and obtain the first order ODE (3). Note that the function f(t,y) =
Y2
t+y2 — 3y

(k+1)

depends linearly on y1, ys.

We want to find a vector y(!) = [4] such that
Y2

(] —h- f(tn [B]) =y

Y1 | 1 Y2 _ -1
Y2 2 %—%yg——Byl 2

_1 _ 1
This gives the linear system Syl 21y 2 = ! which has the solution y(!) = Yol = | 2 |. This
5Y1 + 592 2.25 Yo 3

gives y(3) ~ 0.5 and /(%) ~ 3.

Claim: Let n = 1. For a stable problem with f,(¢,y) < 0 the nonlinear equation has a unique solution.
Proof: The left hand side F(yg+1) := yg+1 — b+ f(tk+1,Yr+1) is strictly increasing for increasing yyy1, with
F(y) - —oo for y — —oo0 and F(y) — oo for y — oc.

