
Error Propagation and Roundoff Error

In general our problem has a certain number of input values x1, . . . ,xn and a certain number of output values y1, . . . ,ym ,
and some (possibly complicated) formulas describe how the output values depend on the input values. Let us consider the
simplest case of one input and one output value where we have y = f (x) .

Error propagation

If we only have an approximation x̃ of our input value x available (e.g., because of measurement errors), the best thing we
can do is to compute ỹ := f (x̃) . For the resulting relative error we obtain

εy :=
ỹ− y

y
=

f (x̃)− f (x)
f (x)

≈ (x̃− x) f ′(x)
f (x)

=
x f ′(x)
f (x)

· x̃− x
x

= c f · εx

where the magnification factor c f (x) := x f ′(x)
f (x) is called the condition number of the function f at x . The condition number

determines how sensitive a problem is to small perturbations of input values. If |c f | is not much larger than 1 we call the
problem well-conditioned, in the case of |c f | � 1 we call the problem ill-conditioned.

Example 1: The function f (x) =
1
x

has the condition number c f (x) =
x · (−x−2)

x−1 =−1 and is therefore well conditioned

for all x. E.g., for x = 2 and x̂ = 1.96 we obtain εŷ ≈−εx̂:

x = 2 x̂ = 1.96 εx̂ =
x̂− x

x
=−.02

y = f (x) =
1
2
= .5 ŷ = f (x̂) =

1
1.96

≈ .5102 εŷ =
ŷ− y

y
≈ .0204

For the function f (x) = xα we obtain the condition number c f (x) =
x ·αxα−1

xα
= α . This is therefore well conditioned

unless |α| is huge.

Example 2: The function f (x) = lnx has the condition number c f (x) =
x · 1

x
lnx

=
1

lnx
. For x = 1.01 the function is ill

conditioned: we obtain the condition number

c f (x) =
1

lnx
≈ 1

1− x
=

1
.01

= 100

using the Taylor approximation lnx≈ 0+1 · (x−1) for x close to 1. E.g., for x = 1.01 and x̂ = 1.02 we obtain εŷ ≈ 100εx̂:

x = 1.01 x̂ = 1.02 εx̂ =
x̂− x

x
≈ .0099

y = f (x)≈ .00995 ŷ = f (x̂)≈ .0198 εŷ =
ŷ− y

y
≈ .99

Note that x and x̂ are close to a zero of lnx. Since lnx≈ x−1 for x close to 1 we have y≈ .01 and ŷ≈ .02 which corresponds
to a relative error of 1 whereas x̂−x

x ≈ .01.

Error propagation for arithmetic operations +,−,·,/

Assume that x,y are two exact values, and that x̃,ỹ are approximate values.

For the product z = x ·y we get for perturbed input values x̃, ỹ the result z̃ := x̃ỹ = x(1+ εx)y(1+ εy) = z(1+ εx + εy + εxεy)
. Hence we have εz = εx + εy + εxεy ≈ εx + εy .

For the quotient z = x/y we obtain εz ≈ εx + ε1/y ≈ εx− εy using the above result for f (x) = 1/x .
Note that for z = x · y and for z = x/y there is no magnification of the relative errors εx, εy, i.e., these are well-conditioned
operations.

1



For the sum z = x+ y we have εz =
x(1+εx)+y(1+εy)−(x+y)

x+y = x
x+y εx +

y
x+y εy (this also covers subtraction since x,y can have

arbitrary signs), hence

|εz| ≤
∣∣∣∣ x
x+ y

∣∣∣∣ |εx|+
∣∣∣∣ y
x+ y

∣∣∣∣ |εy|

Note that depending on the values of x and y this may cause a magnification of the relative errors εx, εy:

• for x≈−y the factors
∣∣∣ x

x+y

∣∣∣ and
∣∣∣ y

x+y

∣∣∣ are much larger than 1, and there is a larger magnification of the relative errors
εx, εy. This is called subtractive cancellation.
Example: x = 101, y =−100, then x

x+y = 101, y
x+1 =−100

• for x, y with opposite signs, but different magnitude the factors
∣∣∣ x

x+y

∣∣∣ and
∣∣∣ y

x+y

∣∣∣ are not much larger than one.

Example: x = 10, y =−1, then x
x+y =

10
9 , y

x+y =
−1
9 .

• for x,y with the same sign we have that
∣∣∣ x

x+y

∣∣∣ and
∣∣∣ y

x+y

∣∣∣ are less than one, and added together give one. Hence

|εz| ≤max{|εx|, |εy|} . Example: x = 3, y = 7, then x
x+y =

3
10 , y

x+y =
7

10 .

Summary: None of the operations z = x · y, z = x/y, z = x+ y cause any magnification of the relativ errors, except the case
z = x+ y with x≈−y (subtractive cancellation), or equivalently, z = x− y with x≈ y.

Machine numbers and algorithms in machine arithmetic

Instead of arbitrary real numbers in R we only have a finitely many machine numbers available. As long as xmin ≤ |x| ≤ xmax

(i.e., no underflow or overflow) we can approximate a real number x with a machine number f l(x) such that
∣∣∣ f l(x)−x

x

∣∣∣≤ εM .
Here εM denotes the so-called machine accuracy (aka unit roundoff).

An algorithm in machine arithmetic is a function ŷ = f̂ (x̂) which takes an input machine number x̂ , performs certain
operations in machine arithmetic and finally gives an output machine number ŷ . If we want to compute y = f (x) for some
x ∈ R we would use this algorithm and compute ŷ = f̂ (x̂) with x̂ = f l(x) . What is the best accuracy

∣∣∣ ŷ−y
y

∣∣∣ we can hope to
achieve?

The ideal algorithm would compute ỹ := f (x̂) exactly (or at least with lots of extra precicion), and then approximate the
result ỹ by the closest machine number ŷ := f l(ỹ) , i.e., we would use f̂ (x̂) := f l( f (x̂)) . If we compare this with y = f (x)
we obtain

∣∣ x̂−x
x

∣∣ ≤ εM ,
∣∣∣ ỹ−y

y

∣∣∣ ≤ |c f |εM and
∣∣∣ ŷ−y

y

∣∣∣ ≤ |c f |εM + εM . This expression is called the unavoidable error. As the

algorithm f̂ uses machine numbers for input and output we must accept a relative error of size εM for both the input and
output values, and this means that the relative error in the result can be as high as |c f |εM + εM . Hence the ideal algorithm
would achieve for well-conditioned functions an error of not much more than εM , and for ill-conditioned functions we would
obtain an error of order |c f |εM .

The ideal algorithm is usually impossible to implement or too costly (but note that IEEE 754 requires that the elementary
operations +,−, ·,/,√ are implemented in that way). However, we can expect that the actual implementation performs not
much worse than the ideal algorithm: We call an algorithm numerically stable if it yields in machine arithmetic a result
ŷ = f̂ (x̂) such that

∣∣∣ ŷ−y
y

∣∣∣≤C(|c f |εM + εM) where C is not much larger than 1 (say, not larger than 10 ).

One way to show that an algorithm is numerically stable is called forward error analysis.

Forward Error Analysis

We try to find upper bounds for the absolute values of the relative error at each stage of the algorithm, moving forward
through the algorithm. We start with bounds for the errors in the given data. When a function f is applied, we multiply the
error bound by the condition number

∣∣c f
∣∣ . When two values are added, subtracted, multiplied, divided we use the above

formulas for error propagation. Each time a result is rounded we add |εM| to the error bound.

2



Example: Consider y= f (x) := 1−cosx for x= 10−5 and double precision machine numbers. We find that c f =
xsinx

1−cosx ≈
x·x

x2/2 = 2 , hence the function is well-conditioned and the unavoidable error is |c f |εM + εM ≈ 3 ·10−16 .

Consider the first algorithm
y1 := cosx, y := 1− y1

Evaluating this in machine arithmetic gives x̂ := f l(x) , ỹ1 := cos x̂ , ŷ1 := f l(ỹ1) , ỹ := 1− ŷ1 , ŷ := f l(ỹ) . For the relative
errors we obtain

∣∣ x̂−x
x

∣∣ ≤ εM ,
∣∣∣ ỹ1−y1

y1

∣∣∣ ≤ c1εM with c1 =
∣∣∣ x(−sinx)

cosx

∣∣∣ ≈ 10−10 ,
∣∣∣ ŷ1−y1

y1

∣∣∣ ≤ c1εM + εM ,
∣∣∣ ỹ−y

y

∣∣∣ ≤ c2 (c1εM + εM)

with c2 =
∣∣∣ y1(−1)

1−y1

∣∣∣≈ 2 ·1010 and finally∣∣∣∣ ŷ− y
y

∣∣∣∣≤ c2 (c1εM + εM)+ εM ≈ 2εM +2 ·1010
εM + εM ≈ 2 ·10−6

which is much larger than the unavoidable error. This algorithm is numerically unstable.

To find a better algorithm we can use that 1− cosx = 1− cos( x
2 +

x
2) = 1− cos( x

2)
2 + sin( x

2)
2 = 2sin( x

2)
2 . This yields the

second algorithm
y1 := x/2, y2 := siny1, y3 := y2

2, y4 := 2y3

Note that multiplication by 2 and division by 2 is exact in machine arithmetic, so the first and last step introduce no roundoff
error. We only have to find the condition numbers c1 =

y1 cosy1
y1
≈ 1 and c2 =

y22y2
y2

2
= 2 for the second and third steps and

obtain in the same way as above
∣∣∣ ŷ−y

y

∣∣∣ ≤ c2 (c1εM + εM)+ εM ≈ 2εM + 2εM + εM ≈ 5 · 10−16 . This is not much more than
the unavoidable error, and this algorithm is numerically stable.

3


