
Linear Systems

Example: Find x1,x2,x3 such that the following three equations hold:

2x1 +3x2 + x3 = 1

4x1 +3x2 + x3 = −2

−2x1 +2x2 + x3 = 6

We can write this using matrix-vector notation as 2 3 1
4 3 1
−2 2 1


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 1
−2
6


︸ ︷︷ ︸

b

General case: We can have n equations for n unknowns:

Given: Coefficients a11, . . . ,ann , right hand side entries b1, . . . ,bn .

Wanted: Numbers x1, . . . ,xn such that

a11x1 + · · ·+a1nxn = b1
...

an1x1 + · · ·+annxn = bn

Using matrix-vector notation this can be written as follows: Given a matrix A ∈ Rn×n and a right-hand side vector b ∈ Rn ,
find a vector x ∈ Rn such that  a11 . . . a1n

...
...

an1 . . . ann


︸ ︷︷ ︸

A

 x1
...

xn


︸ ︷︷ ︸

x

=

 b1
...

bn


︸ ︷︷ ︸

b

Singular and Nonsingular Matrices

Definition: We call a matrix A ∈ Rn×n singular if there exists a nonzero vector x ∈ Rn such that Ax = 0 .

Example: The matrix A =

[
1 −2
−2 4

]
is singular since for x =

[
2
1

]
we have Ax =

[
0
0

]
.

The matrix A =

[
1 −2
0 4

]
is nonsingular: Ax =

[
b1
b2

]
implies x2 = b2/4 , x1 = b1 +2x2. Therefore Ax = 0 implies x = 0.

Observation: If A is singular, the linear system Ax = b has either no solution or infinitely many solutions: As A is
singular there exists a nonzero vector y with Ay = 0 . If Ax = b has a solution x , then x+αy is also a solution for any α ∈R
.

We will later prove: If A is nonsingular, then the linear system Ax = b has a unique solution x for any given b ∈ Rn .

We only want to consider problems where there is a unique solution, i.e. where the matrix A is nonsingular. How can we
check whether a given matrix A is nonsingular? If we use exact arithmetic we can use Gaussian elimination with pivoting
(which will be explained later) to show that A is nonsingular. But in machine arithmetic we can only assume that a machine
approximation for the matrix A is known, and we will have to use a different method to decide whether A is nonsingular in
this case.
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Gaussian Elimination without Pivoting

Basic Algorithm: We can add (or subtract) a multiple of one equation to another equation, without changing the solution
of the linear system. By repeatedly using this idea we can eliminate unknowns from the equations until we finally get an
equation which just contains one unknown variable.

1. Elimination:

step 1: eliminate x1 from equation 2 , . . . , equation n by subtracting multiples of equation 1:
eq2 := eq2− `21 · eq1 , . . . , eqn := eqn− `n1 · eq1

step 2: eliminate x2 from equation 3 , . . . , equation n by subtracting multiples of equation 2:
eq3 := eq3− `32 · eq2 , . . . , eqn := eqn− `n2 · eq2
...

step n−1 : eliminate xn−1 from equation n by subtracting a multiple of equation n−1 :
eqn := eqn− `n,n−1 · eqn−1

2. Back substitution:
Solve equation n for xn .
Solve equation n−1 for xn−1 .
...
Solve equation 1 for x1 .

The elimination transforms the original linear system Ax = b into a new linear system Ux = y with an upper triangular matrix
U , and a new right hand side vector y .

Example: We consider the linear system 2 3 1
4 3 1
−2 2 1


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 1
−2
6


︸ ︷︷ ︸

b

Elimination: To eliminate x1 from equation 2 we choose l21 = 4/2 = 2 and subtract l21 times equation 1 from equation 2.
To eliminate x1 from equation 3 we choose l31 = −2/1 = −1 and subtract l31 times equation 1 from equation 3. Then the
linear system becomes  2 3 1

0 −3 −1
0 5 2

 x1
x2
x3

=

 1
−4
7


To eliminate x2 from equation 3 we choose l32 = 5/(−3) and subtract l32 times equation 2 from equation 3, yielding the
linear system  2 3 1

0 −3 −1
0 0 1

3


︸ ︷︷ ︸

U

 x1
x2
x3

=

 1
−4

1
3


︸ ︷︷ ︸

y

Now we have obtained a linear system with an upper triangular matrix (denoted by U ) and a new right hand side vector
(denoted by y ).

Back substitution: The third equation is 1
3 x3 =

1
3 and gives x3 = 1 . Then the second equation becomes −3x2− 1 = −4 ,

yielding x2 = 1 . Then the first equation becomes 2x1 +3+1 = 1 , yielding x1 =−3
2 .

Transforming the matrix and right hand side vector separately: We can split the elimination into two parts: The
first part acts only on the matrix A , generating the upper triangular matrix U and the multipliers ` jk . The second part uses
the multipliers ` jk to transform the right hand side vector b to the vector y .
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1. Elimination for matrix: Given the matrix A , find an upper triangular matrix U and multipliers ` jk :
Let U := A and perform the following operations on the rows of U :

step 1: `21 := u21/u11, row2 := row2− `21 · row1 , . . . , `n1 := un1/u11, rown := rown− `n1 · row1
step 2: `32 := u32/u22, row3 := row3− `32 · row2 , . . . , `n2 := un2/u22, rown := rown− `n2 · row2

...
step n−1 : `n,n−1 := un,n−1/un,n, rown := rown− `n,n−1 · rown−1

2. Transform right hand side vector: Given the vector b and the multiplies ` jk find the transformed vector y :
Let y := b and perform the following operations on y :

step 1: y2 := y2− `21 · y1 , . . . , yn := yn− `n1 · y1
step 2: y3 := y3− `32 · y2 , . . . , yn := yn− `n2 · y2

...
step n−1 : yn := yn− `n,n−1 · yn−1

3. Back substitution: Given the matrix U and the vector y find the vector x by solving Ux = y :
xn := bn/un,n

xn−1 := (bn−1−un−1,nxn)/un−1,n−1
...
x1 := (b1−u12x2−·· ·−u1nxn)/u11

What can possibly go wrong: Note that we have to divide by the so-called pivot elements u11, . . . ,un−1,n−1 in part 1,
and we divide by u11, . . . ,unn in part 3. If we encounter a zero pivot we have to stop the algorithm with an error message.
Part 1 of the algorithm therefore becomes

step 1: If u11 = 0 then stop with error message else `21 := u21/u11, row2 := row2− `21 · row1 , . . .
step 2: If u22 = 0 then stop with error message else `32 := u32/u22, row3 := row3− `32 · row2 , . . .

...
step n−1 : If un−1,n−1 = 0 then stop with error message else `n,n−1 := un,n−1/un,n, rown := rown− `n,n−1 · rown−1

If un,n = 0 then stop with error message

Observation: If for a given matrix A part 1 of the algorithm finishes without an error message, then parts 2 and 3 work,
and the linear system has a unique solution. Hence the matrix A must be nonsingular. However, the converse is not true: For

the matrix A =

[
0 1
1 0

]
the algorithm stops immediately since u11 = 0 , but the matrix A is nonsingular.

Reformulating part 2 as forward substitution: Now we want to express the relation between b and y in a different
way. Assume we are given y , and we want to reconstruct b by reversing the operations: For n = 3 we would perform the
operations

y3 := y3 + `32y2, y3 := y3 + `31y1, y2 := y2 + `21y1

and obtain  b1
b2
b3

=

 y1
y2 + `21 · y1
y3 + `31 · y1 + `32 · y2

=

 1 0 0
`21 1 0
`31 `32 1


︸ ︷︷ ︸

L

 y1
y2
y3


with the lower triangular matrix L .

Therefore we can rephrase the transformation step as follows: Given L and b , solve the linear system Ly = b for y . Since
L is lower triangular, we can solve this linear system by forward substitution: We first solve the first equation for y1 , then
solve the second equation for y2 , . . . .
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The LU decomposition: In the same way as we reconstructed the vector b from the vector y , we can reconstruct the
matrix A from the matrix U : For n = 3 we obtain row 1 of A

row 2 of A
row 3 of A

=

 (row 1 of U)
(row 2 of U)+ `2,1 · (row 1 of U)
(row 3 of U)+ `3,1 · (row 1 of U)+ `3,2 · (row 2 of U)

=

 1 0 0
`21 1 0
`31 `32 1


︸ ︷︷ ︸

L

 row 1 of U
row 2 of U
row 3 of U



Therefore we have A = LU . We have written the matrix A as the product of a lower triangular matrix (with 1’s on the
diagonal) and an upper triangular matrix U . This is called the LU-decomposition of A .

Summary: Now we can rephrase the parts 1., 2., 3. of the algorithm as follows:

1. Find the LU-decomposition A = LU :
Perform elimination on the matrix A , yielding an upper triangular matrix U . Store the multipliers in a matrix L and
put 1’s on the diagonal of the matrix L :

L :=


1 0 · · · 0

`21
. . . . . .

...
...

. . . . . . 0
`n,1 · · · `n,n−1 1


2. Solve Ly = b using forward substitution

3. Solve Ux = y using back substitution

The matrix decomposition A = LU allows us to solve the linear system Ax = b in two steps: Since

L Ux︸︷︷︸
y

= b

we can first solve Ly = b to find y , and then solve Ux = y to find x .

Example:

1. We start with U := A and L being the zero matrix:

L =

 0 0 0
0 0 0
0 0 0

 , U =

 2 3 1
4 3 1
−2 2 1


step 1:

L =

 0 0 0
2 0 0
−1 0 0

 , U =

 2 3 1
0 −3 −1
0 5 2


step 2:

L =

 0 0 0
2 0 0
−1 −5

3 0

 , U =

 2 3 1
0 −3 −1
0 0 1

3



We put 1’s on the diagonal of L and obtain L =

 1 0 0
2 1 0
−1 −5

3 1

 , U =

 2 3 1
0 −3 −1
0 0 1

3

 .

4



2. We solve the linear system Ly = b  1 0 0
2 1 0
−1 −5

3 1

 y1
y2
y3

=

 1
−2
6


by forward substitution: The first equation gives y1 = 1 . Then the second equation becomes 2+ y2 = −2 yielding
y2 =−4 . Then the third equation becomes −1− 5

3 · (−4)+ y3 = 6 , yielding y3 =
1
3 .

3. The back substitution for solving Ux = b is performed as explained above.

Gaussian Elimination with Pivoting

There is a problem with Gaussian elimination without pivoting: If we have at step j that u j j = 0 we cannot continue since
we have to divide by u j j . This element u j j by which we have to divide is called the pivot.

Example: For A=

 4 −2 2
−2 1 3
2 −2 2

we use `21 =
−2
4 , `31 =

2
4 and obtain after step 1 of the elimination U =

 4 −2 2
0 0 4
0 −1 2


Now we have u22 = 0 and cannot continue.

Gaussian elimination with pivoting uses row interchanges to overcome this problem. For step j of the algorithm we consider
the pivot candidates u j, j,u j+1, j, . . . ,un j , i.e., the diagonal element and all elements below. If there is a nonzero pivot
candidate, say uk j we interchange rows j and k of the matrix U . Then we can continue with the elimination.

Since we want that the multipliers correspond to the appropriate row of U , we also interchange the rows of L whenever
we interchange the rows of U . In order to keep track of the interchanges we use a vector p which is initially (1,2, . . . ,n)> ,
and we interchange the rows of p whenever we interchange the rows of U .

Algorithm: Gaussian Elimination with pivoting: Input: matrix A . Output: matrix L (lower triangular), matrix U
(upper triangular), vector p (contains permutation of 1, . . . ,n )

L :=

 0 · · · 0
...

...
0 · · · 0

 ; U := A ; p :=

 1
...
n


For j = 1 to n−1

If (U j j, . . . ,Un j) = (0, . . . ,0)
Stop with error message “Matrix is singular”

Else
Pick k ∈ { j, j+1, . . . ,n} such that Uk j 6= 0

End
Interchange row j and row k of U
Interchange row j and row k of L
Interchange p j and pk
For k = j+1 to n

Lk j :=Uk j/U j j

(row k of U) := (row k of U)−Lk j · (row j of U)
End

End
If Unn = 0

Stop with error message “Matrix is singular”
End
For j = 1 to n

L j j := 1
End
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Note that we can have several nonzero pivot candidates, and we still have to specify which one we pick. This is called a
pivoting strategy. Here are two examples:

Pivoting strategy 1: Pick the smallest k such that Uk j 6= 0 .

Pivoting strategy 2: Pick k so that
∣∣Uk j

∣∣ is maximal.

If we use exact arithmetic, it does not matter which nonzero pivot we choose. However, in machine arithmetic the choice of
the pivot can make a big difference for the accuracy of the result, as we will see below.

Example:

L =

 0 0 0
0 0 0
0 0 0

 , U =

 4 −2 2
−2 1 3
2 −2 2

 , p =

 1
2
3


Here the pivot candidates are 4,−2,2 , and we use 4 :

L =

 0 0 0
−1

2 0 0
1
2 0 0

 , U =

 4 −2 2
0 0 4
0 −1 1

 , p =

 1
2
3


Here the pivot candidates are 0,−1 , and we use −1 . Therefore we interchange rows 2 and 3 of L,U, p :

L =

 0 0 0
1
2 0 0
−1

2 0 0

 , U =

 4 −2 2
0 −1 1
0 0 4

 , p =

 1
3
2


For column 2 we have l32 = 0 and U does not change. Finally we put 1 s on the diagonal of L and get the final result

L =

 1 0 0
1
2 1 0
−1

2 0 1

 , U =

 4 −2 2
0 −1 1
0 0 4

 , p =

 1
3
2


LU Decomposition for Gaussian elimination with pivoting: If we perform row interchanges during the algorithm we
no longer have LU = A . Instead we obtain a matrix Ã which contains the rows of A in a different order:

LU = Ã :=

 row p1 of A
...

row pn of A


The reason for this is the following: If we applied Gaussian elimination without pivoting to the matrix Ã , we would get the
same L and U that we got for the matrix A with pivoting.

Solving a linear system using Gaussian elimination with pivoting: In order to solve a linear system Ax = b we first
apply Gaussian elimination with pivoting to the matrix A , yielding L,U, p . Then we know that LU = Ã .

By reordering the equations of Ax = b in the order p1, . . . , pn we obtain the linear system row p1 of A
...

row pn of A


︸ ︷︷ ︸

Ã=LU

 x1
...

xn

=

 bp1
...

bpn


︸ ︷︷ ︸

b̃

i.e., we have L(Ux) = b̃ . We set y =Ux . Then we solve the linear system Ly = b̃ using forward substitution, and finally we
solve the linear system Ux = y using back substitution.
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Summary:

1. Apply Gaussian elimination with pivoting to the matrix A , yielding L , U , p such that LU =

 row p1 of A
...

row pn of A

 .

2. Solve Ly =

 bp1
...

bpn

 using forward substitution.

3. Solve Ux = y using back substitution.

Note that this algorithm is also known as Gaussian elimination with partial pivoting (partial means that we perform row
interchanges, but no column interchanges).

Example: Solve Ax = b for A =

 4 −2 2
−2 1 3
2 −2 2

 , b =

 2
1
−4

 . With L and p from the Gaussian elimination the linear

system Ly = (bp1 ,bp2,bp3
)> = (b1,b3,b2)

> is 1 0 0
1
2 1 0
−1

2 0 1

 y1
y2
y3

=

 2
−4
1


yielding y = (2,−5,2) using forward substitution. Then we solve Ux = y 4 −2 2

0 −1 1
0 0 4

 x1
x2
x3

=

 2
−5
2


using back substitution and obtain x3 =

1
2 , x2 =

11
2 , x3 =

1
2 .

Existence and Uniqueness of Solutions

If we perform Gaussian elimination with pivoting on a matrix A (in exact arithmetic), there are two possibilities:

1. The algorithm can be performed without an error message. In this case the diagonal elements u11, . . . ,unn are all
nonzero. For an arbitrary right hand side vector b we can then perform forward substitution (since the diagonal
elements of L are 1), and back substitution, without having to divide by zero. Therefore this yields exactly one
solution x for our linear system.

2. The algorithm stops with an error message. E.g., assume that the algorithm stops in column j = 3 since all pivot
candidates are zero. This means that a linear system Ax = b is equivalent to the linear system of the form

~ ∗ ∗ ∗ · · · ∗
0 ~ ∗ ∗ · · · ∗
... 0 0 ∗ · · · ∗
...

...
...

...
...

0 0 0 ∗ · · · ∗




x1
x2
x3
...

xn

=


c1
c2
c3
...

cn


Here ∗ denots an arbitrary number, and ~ denotes a nonzero number. Let us first consider equations 3 through n of
this system. These equations only contain x4 . . . ,xn . There are two possibilities:

(a) There is a solution x4, . . . ,xn of equations 3 through n . Then we can choose x3 arbitrarily. Now we can use
equation 2 to find x2 , and finally equation 1 to find x1 (note that the diagonal elements are nonzero). Therefore
we have infinitely many solutions for our linear system.

(b) There is no solution x4, . . . ,xn of equations 3 through n . That means that our original linear system has no
solution.
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Observation: In case 1. the linear system has a unique solution for any b . In particular, Ax = 0 implies x = 0 . Hence A
is nonsingular.
In case 2 we can construct a nonzero solution x for the linear system Ax = 0 . Hence A is singular.

We have shown:

Theorem: If a square matrix A is nonsingular, then the linear system Ax = b has a unique solution x for any right hand
side vector x .
If the matrix A is singular, then the linear system Ax = b has either infinitely many solutions, or it has no solution,
depending on the right hand side vector.

Example: Consider A =

[
4 −2
−2 1

]
. The first step of Gaussian elimination gives l21 =

−2
4 and U =

[
4 −2
0 0

]
. Now

we have u22 = 0 , therefore the algorithm stops. Therefore A is singular.

Consider the linear system
[

4 −2
−2 1

][
x1
x2

]
=

[
2
4

]
.

By the first step of elimination this becomes
[

4 −2
0 0

][
x1
x2

]
=

[
2
5

]
. Note that the second equation has no solution,

and therefore the linear system has no solution.

Now consider
[

4 −2
−2 1

][
x1
x2

]
=

[
2
−1

]
.

By the first step of elimination this becomes
[

4 −2
0 0

][
x1
x2

]
=

[
2
0

]
. Note that the second equation is always true. We

can choose x2 arbitrarily, and then determine x1 from equation 1: 4x1− 2x2 = 2 , yielding x1 = (2+ 2x2)/4 . This gives
infinitely many solutions.

Gaussian Elimination with Pivoting in Machine Arithmetic

For a numerical computation we can only expect to find a reasonable answer if the original problem has a unique solution.
For a linear system Ax = b this means that the matrix A should be nonsingular. In this case we have found that Gaussian
elimination with pivoting, together with forward and back substitution always gives us the answer, at least in exact arithmetic.

It turns out that Gaussian elimination with pivoting can give us solutions with an unnecessarily large roundoff error, depend-
ing on the choice of the pivots.

Example We want to solve the following linear system using Gaussian elimination with pivoting: 4 −2 2
−2 1.01 3
2 −2 2

 x1
x2
x3

=

 4
5
6


Pivoting strategy 1: always select the first nonzero candidate as pivot.

Column 1: Pivot selection:

 4 −2 2
−2 1.01 3
2 −2 2


Elimination: With multipliers −1

2 ,
1
2 we obtain 4 −2 2

0 .01 4
0 −1 1

 x1
x2
x3

=

 4
7
4


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Column 2: Pivot selection:

 4 −2 2
0 .01 4
0 −1 1


Elimination: With multiplier −100 we obtain 4 −2 2

0 .01 4
0 0 401

 x1
x2
x3

=

 4
7

704


Back substitution:

x3 =
704
401

, x2 =
7−4x3

.01
=

7−4 · 704
401

.01
, x1 =

4+2x2−2x3

4
In machine arithmetic we will obtain a value x̂3 with relative error of order εM ≈ 10−16.

Note that 4 · 704
401 ≈ 7.022, hence computing 7− 7.022 causes subtractive cancelation, with magnification factor

∣∣ 7
7−7.022

∣∣ ≈
312. In machine arithmetic we will therefore obtain a value x̂2 with relative error of order 312 ·10−16 ≈ 3 ·10−14.

In the computation of x1 there is no subtractive cancelation. But since we are using the value x̂2, we will obtain a value x̂1
with a relative error of order 10−14.

Result: We obtain x̂1 and x̂2 with a relative error of order 10−14, and x̂3 with a relative error of order 10−16.

Pivoting strategy 2: always select the pivot candidate with the largest absolute value.

Column 1: same as above

Column 2: Pivot selection:

 4 −2 2
0 .01 4
0 −1 1

, so we interchange rows 2 and 3:

 4 −2 2
0 −1 1
0 .01 4

 x1
x2
x3

=

 4
4
7


Elimination: With multiplier −.01 we obtain 4 −2 2

0 −1 1
0 0 4.01

 x1
x2
x3

=

 4
4

7.04


Back substitution:

x3 =
7.04
4.01

, x2 =
4− x3

−1
=

4− 704
401

.01
, x1 =

4+2x2−2x3

4

For x2 we now have to compute 4− 704
401 ≈ 4−1.76 so there is no subtractive cancelation.

Result: We obtain x̂1, x̂2, x̂3 with a relative error of order 10−16.

Conclusion: The first algorithm is numerically unstable, the second algorithm is numerically stable.

This example is typical: Choosing very small pivot elements leads to subtractive cancellation during back substitution when
we compute

x j =
y j− (u j, j+1x j+1 + · · ·+u j,nxn)

u j j

If x j has a size of roughly 1 , this means that y j− (u j, j+1x j+1 + · · ·+u j,nxn) must be of the same size as u j j, hence there will
be subtractive cancelation in the subtraction.

Therefore we should use a pivoting strategy which avoids small pivot elements. The simplest way to do this is the following:
Select the pivot candidate with the largest absolute value.

In most practical cases this leads to a numerically stable algorithm, i.e., no unnecessary magnification of roundoff error.

There are very few cases where this algorithm is numerically unstable. We will explain later how to detect and fix this
problem.
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The inverse matrix

Assume A ∈ Rn×n is a nonsingular matrix. Then the linear system Ax = b has a unique solution for every b ∈ Rn. Let e( j)

denote the jth unit vector with e( j)
i =

{
1 for i = j
0 for i 6= j

, and let v( j) ∈ Rn denote the solution of the linear system Av( j) = e( j).

Then the n×n matrix
[
v(1), . . . ,v(n)

]
is the inverse matrix A−1.

• we have A−1A = AA−1 = I with the indentity matrix I :=
[
e(1), . . . ,e(n)

]
• the solution of the linear system Ax = b is given by x = A−1b

• how to compute the inverse matrix A−1:

– use Gaussian elimination to find L,U, p.

– use this to solve the linear system for the n right-hand side vectors


1
0
...
0

 , . . . ,


0
...
0
1

, yielding the n solution

vectors v(1), . . . ,v(n)

– let A−1 =
[
v(1), . . . ,v(n)

]
In Matlab we can obtain the inverse matrix as inv(A) . Note that in most applications there is actually no need to find
the inverse matrix.

If we need to compute x = A−1b for a vector b we should use x=A\b
If we need to compute X = A−1M for a matrix M we should use X=A\M

If we need to compute x=A−1b for several vectors b we should use [L,U,p]=lu(A,’vector’) and then use x=U\(L\b(p))
for each vector b.

If we use inv(A) then Matlab has first to find the LU-decomposition, and then use this to find the vectors v(1), . . . ,v(n) which
is a substantial extra work. If the size n is small this does not really matter. But in many applications we have n > 1000, and
then using inv(A) wastes time and gives less accurate results.

Number of operations for numerical computations

When we perform elimination we update elements of the matrix U by subtracting multiples of the pivot row. So we have to
perform updates like

u42 := u42− `42 ·u22

On a computer this involves the following operations

• memory access: getting `42,u22,u42 from main memory into the processor at the beginning, writing the new value of
u42 to main memory at the end

• multiplication t := `42 ·u22

• addition/subtraction u42 := u42− t

To simplify our bookkeeping, we will only count multiplications and divisions. Typically there will be an equal number
of additions and subtractions, and memory access operations. We only want to get some rough idea how the work increases
depending on the size n of the linear system.

• finding L,U, p costs 1
3 n3 +O(n2) operations

elimination of column 1,2, . . . ,n−1 costs n(n−1)+(n−1)(n−2)+ · · ·+2 ·1 = 1
3 n3 +O(n2) operations
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• solving Ax = b if we know L,U, p: costs n2 operations

solving Ly =

 bp1
...

bpn

: finding y1,y2, . . . ,yn costs 0+1+ · · ·+(n−1) = n(n−1)
2 operations

solving Ux = y: finding xn,xn−1, . . . ,x1 costs 1+2+ · · ·+n = (n+1)n
2 operations

• finding A−1 if we know L,U, p costs 2
3 n3 +O(n2) operations

finding column v(1): n(n−1)
2 for forward substitution, (n+1)n

2 for back substitution
finding column v(2): (n−1)(n−2)

2 for forward substitution, (n+1)n
2 for back substitution

...
total: 1

6 n3 +O(n2) for the forward substitutions, n (n+1)n
2 for the back substitutions

• solving Ax = b if we know A−1 costs n2 operations
if we have A−1, finding the matrix-vector product A−1b takes n2 operations

Comparison

In many applications we have to solve several linear systems with the same matrix A.
We have two possible strategies and the following costs:

setup for matrix A for each vector b
Strategy 1 [L,U,p]=lu(A,’vector’) x=U\(L\b(p))

1
3 n3 +O(n2) n2

Strategy 2 Ai=inv(A) x=Ai*b

n3 +O(n2) n2

Observations:

• The setup for the matrix A takes most of the work. The additional work for each vector b is very low in comparison.

• Strategy 2 takes about three times as long as Strategy 1
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