
Approximation of functions for AMSC 460
Lecture 1

Prof. Jacob Bedrossian
University of Maryland, College Park

These notes will supplement the lectures on approximation of functions.
Suppose one wants to solve a differential equation for a physical quantity of interest. In general,

you won’t be able to find, or represent, the exact solution using your computer. Instead, you will
generate an approximation.

Let us start by being precise about what kinds of questions we want to answer with a specific
interpolation example. Suppose one has a function f : [0, 1] → R and for each n ≥ 1 we build an
approximation fn(x) as a piecewise linear function: define h = 1/n and

fn(x) = f(hj)− f(h(j + 1)− f(hj)

h
(x− hj) x ∈ [jh, (j + 1)h]. (1)

This functon, fn(x), is the piecewise linear continuous function which satisfies f(jh) = fn(jh) for
all 0 ≤ j ≤ n. As in the interpolation problem, in real applications you often don’t really know
the ‘true’ function f but let us suppose for now that we do. The next question you want to ask is:
“how good of an approximation of f is fn” or “how close is fn to f for n large?”. The immediate
next question you should ask though is “wait...what do I actually mean by close?” This brings us
to the concept of a norm, which provides a measure of distance and size for functions.

Definition 1. Let V be a vectorspace. A function ‖ · ‖ : V → R is called a norm if

1. for all f ∈ V , ‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0;

2. for all λ ∈ R and f ∈ V , ‖λf‖ = |λ| ‖f‖;

3. for all f, g ∈ V , ‖f + g‖ ≤ ‖f‖+ ‖g‖.

Property (3) is called the triangle inequality.

The idea is that ‖f‖ measures the size of f and ‖f − g‖ will measure the “distance” between f
and g.

Example 1. For the vectorspace Rn, the regular Euclidean distance

‖v‖ =

(
n∑
i=1

v2i

)1/2

, (2)

is a norm (the proof of the triangle inequality in Definition 1 is not so obvious, and is covered in
e.g. Math 405 and/or Intro linear algebra).

Hence, the idea would be to define a norm and then say that fn and f are “close” if ‖fn − f‖
is small. However, there are many different norms defined for functions. We will only really discuss
two or three of them:

‖f‖L∞(a,b) = max
x∈[a,b]

|f(x)| (3a)

‖f‖L2(a,b) =

(∫ b

a
|f(x)|2 dx

)1/2

(3b)

‖f‖L1(a,b) =

∫ b

a
|f(x)| dx. (3c)

1

referred to as the L-infinity, L-two, and L-one norms respectively. If the (a, b) is omitted from the
subscript, assume a = 0 and b = 1 is meant. From the triangle inequality for |·|, we can see that (3c)
and (3a) satisfy the triangle inequality too. It is less clear that (3b) does as well, but this is true
(and after a few more observations, can be proved in the same manner as the triangle inequality for
vectors in Rn).

You might hope that these norms are all pretty similar, in that ‖f‖L2 � 1 implies ‖f‖L∞ � 1
and what not. However, an important, surprisingly subtle, point is that this is false as the next
example shows:

Example 2. Consider the sequence of functions

fn(x) = n 0 ≤ x ≤ 2−n (4)

fn(x) = 0 otherwise. (5)

Then

‖fn‖L∞ = n (6)

‖fn‖L2 = n2−n/2. (7)

Hence, ‖fn‖L∞ →∞ and ‖fn‖L2 → 0.

Example 2 shows that the same sequence of functions can be arbitrarily large when measured
in one norm and arbitrarily small when measured in another. One can prove (in Math 411) that
this is impossible for vectors in Rn, its a something that can only happen in infinite dimensional
vector-spaces. Hence, we see that when quantifying the efficacy of our approximations, we will need
to be precise about what norm we are measuring in. Not everything is lost though, you can observe
the following:

‖f‖L2(a,b) ≤ ‖f‖L∞(a,b) |b− a|1/2 , (8)

so as long as |b− a| <∞, a function can be arbitrarily large in L∞ and arbitrarily small in L2 but
not vice-versa. Finally, for plenty scientific computing applications, the L2 and L∞ norms behave
in a similar manner. However, I wanted to emphasize this subtlety for two reasons: (A) there
are plenty of applications where this is not true, for example, in physics calculations in which the
solution has sharp transitions, e.g. at the interface of water and air etc; (B) even in more mundane
examples, you may end up considering a number of other norms, which will generally not behave
the same.

Let us return to the example of fn given by linear approximation. Let us compute how good of
an approximation this is. As usual, we use Taylor’s theorem. For x ∈ [jx, (j + 1)x] ,

f(x)− fn(x) = f(x)− f(hj)− f(h(j + 1)− f(hj)

h
(x− hj) (9)

Then we write the expansion:

f(x) = f(hj) + f ′(hj)(x− hj) +O(h2) (10)

f(h(j + 1)− f(hj)

h
= f ′(hj) +O(h) (11)

2

and hence,

f(x)− f(hj)− f(h(j + 1)− f(hj)

h
(x− hj) =

(
f ′(hj)− f(h(j + 1)− f(hj)

h

)
(x− hj) +O(h2)

(12)

= O(h2). (13)

Hence,

‖f − fn‖L∞ ≤ sup
0≤j≤n−1

‖f − fn‖L∞(jh,(j+1)h) = O(h2). (14)

Hence, we say that the approximation is second order in L∞. One can verify that the approximation
is also O(h2) in L2 (for example, this follows from (8)).

Consider again the piecewise linear approximation. Analogous to the Lagrange polynomials,
one can write the approximation fn(x) as a linear combination of fixed, standard functions:

fn(x) =

n∑
j=0

f(jh)Tj(x), (15)

where Tj is defined as

Tj(x) =
1

h
(x− jh) x ∈ [(j − 1)h, jh] (16)

Tj(x) =
1

h
((j + 1)h− x) x ∈ [jh, (j + 1)h] (17)

Tj(x) = 0 otherwise. (18)

The T stands for “tent function” (terminology which you will understand if you draw a picture).
Hence, one could say that we first chose an approximation space: Vn = span(T0, T1, ..., Tn) and then
chose an fn ∈ Vn which is a good approximation of f . As we will see, this viewpoint is especially
useful for working in L2, because we have the inner product :

〈f, g〉 =

∫ b

a
f(x)g(x)dx, (19)

which is the analogue of the dot product between functions. For example, notice that

‖f‖ =
√
〈f, f〉, (20)

and similarly

‖f + g‖2L2 = ‖f‖2L2 + 2〈f, g〉+ ‖g‖2L2 . (21)

Hence, if 〈f, g〉 = 0 then we have an analogue of the Pythagorean identity: if 〈f, g〉 = 0 then

‖f + g‖2L2 = ‖f‖2L2 + ‖g‖2L2 . (22)

This motivates the definition

Definition 2. Two functions f, g are called orthogonal if 〈f, g〉 = 0. A set of functions F is called
orthogonal if for all f, g ∈ F with f 6= g, there holds 〈f, g〉 = 0. We similarly call f, g orthonormal
if ‖f‖L2 = ‖g‖L2 = 1.

3

Consider the problem of choosing an approximation space Vn = span(g1, ..., gn) for a given set
of linearly independent functions gi and then finding the approximation fn ∈ Vn which is closest
to a given function f in L2. That is, we are looking to find fn ∈ Vn which solves the following
minimization problem:

‖f − fn‖2L2 = min
v∈Vn

‖f − v‖2L2 . (23)

Notice, however, that this is actually the familiar least squares problem. Indeed, if we write v =∑n
i=1 cigi we can expland the problem we are trying to minimize to:

‖f − v‖2L2 = ‖f‖2 − 2

n∑
i=1

ci〈gi, f〉+

n∑
i=1

n∑
j=1

cicj〈gi, gj〉 := φ(c) (24)

Hence, we are trying to find a minimum of a quadratic polynomial, not some crazy infinite dimen-
sional object you don’t understand. As in Rn, we want fn to be the orthogonal projection of f onto
Vn. Just like in finite dimensions, this is most easily formed if the gi are orthonormal.

Theorem 1. Let Vn = span(g1, ..., gn) and that the gi’s are orthonormal. Then the unique solution
to the minimization problem (23) is given by the orthogonal projection:

fn =

n∑
i=1

〈gi, f〉gi. (25)

Proof. The proof is exactly the same as it was in Rn!.

The piecewise linear example shows that there are probably important settings for which we
want to be able to solve (23) when the gi’s are not an ONB. We have two options. One option is
to use Gram-Schmidt to orthogonalize the basis, which is essentially what we did to compute to
solve the least squares problem via QR factorization. Another option is to try and do it directly
by looking for where the gradient of (24) vanishes: that is, the set of cj ’s such that the following
vanishes for each k:

0 = ∂ckφ(c) = −2〈gk, f〉+ 2
n∑
j=1

〈gk, gj〉cj . (26)

This is simply a linear system, so if you can solve a linear system with the matrix A whose entries
are akj = 〈gk, gj〉 you can find the critical point of φ. As it happens, this matrix is SPD and indeed
the critical point is unique minimizer.

Lemma 1. Let {g1, ..., gn} be non-zero, linearly independent functions with ‖gi‖L2 <∞. Then, the
matrix A whose entries are akj = 〈gk, gj〉 is symmetric positive definite.

Proof. Recall the definition from the linear algebra notes: A is positive definite if xTAx > 0 for all
x ∈ Rn with x 6= 0. Let x ∈ Rn. Then,

xTAx =

n∑
i=1

n∑
j=1

xixj〈gi, gj〉 = 〈
n∑
i=1

xigi,

n∑
j=1

xjgj〉 = ‖
n∑
i=1

xigi‖2L2 . (27)

Since the gi are linearly independent and non-zero, this must be strictly positive provided that
x 6= 0. Therefore A is symmetric positive definite.

4

The above calculations show that we can find the orthogonal projection onto Vn without doing
any sort of QR factorization if we are willing to solve an SPD linear system. SPD linear systems
are faster to solve than QR factorizations are to compute (compare cost of QR and Cholesky – and
the difference is even much more stark when you are looking to solve a large system, which would
occur if you want a more accurate representation), so there are lots of applications when it would
be preferred that we simply do this directly, rather than trying to find an ONB (for example in the
case of the “tent functions” above).

There are still many cases when one uses one of a several sets of standard orthogonal functions
(and so they do not need to be computed via Gram-Schmidt or QR). The two primary examples are
orthogonal polynomials and (much more importantly) Fourier analysis. There are many families for
orthogonal polynomials which arise from choosing slightly different versions of the L2 inner product
(for example 〈f, g〉 =

∫ b
a f(x)g(x)ex

2
dx behaves a lot like the L2 inner product in a lot of ways

but is nevertheless different and different functions are orthogonal with this inner product than the
standard one). Let us discuss just the example for the standard L2 inner product, which are the
Legendre polynomials P0(x), P1(x), Defined on x ∈ [−1, 1] these are formed by starting with
the regular basis

{
1, x, x2, x3, ...

}
and applying Gram-Schmidt. We can see from Gram-Schmidt

that P0(x) = 1 and P0(x) = x. With some work we can prove that the rest are generated via the
relatively simple iteration formula (and so a more complicated full Gram-Schmidt is redundant):

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (28)

As defined, these polynomials will be orthogonal but not normalized:

〈Pi, Pj〉 =

{
2

2n+1 i = j

0 i 6= j.
(29)

The Fourier transform is one of the most revolutionary ideas in all of science and is the building
block for many practical algorithms and widely used technologies as well as several entire branches
of mathematics, so it makes sense that we briefly discuss it here.

Let us discuss the Fourier sine transform first. Let us consider the sequence of functions
{sinnx}∞n=1 defined on x ∈ [0, π]. This set of functions is orthogonal, indeed, a trig calculation
gives

〈sinnx, sinmx〉 =

{
π/2 n = m

0 n 6= m.
(30)

Hence, for any finite n, we can define the truncated sine transform

fn(x) =

n∑
j=1

cj sin jx, (31)

with

cj =
2

π

∫ π

0
f(x) sin jxdx. (32)

The functions sin jx are called “sine modes” or “Fourier modes”. Notice that for all n < ∞,
fn(0) = fn(π) = 0. Measured in L2, the sequence of functions fn will nevertheless approximate
any reasonable function f defined on [0, π]. However, its clear that if f(0) 6= 0 for example, that
‖fn − f‖L∞ ≥ |f(0)|, and hence the approximation will not converge in L∞. Another option is to

5

use the Fourier cosine transform, which is formed from the orthogonal set of cosines: {cosnx}∞n=0

defined on x ∈ [0, π], and notice that the behavior at the boundary is different from the sine
transform. Specifically, we have instead that f ′n(0) = f ′n(π) = 0, whereas the functions themselves
are generally non-zero. This transform will make a good approximation if this condition holds on
f and will have issues otherwise. There are many applications where it is clear which one you
should use (specifically, differential equations) and there are still other variants. An even more
natural place to use the Fourier transform is to form the problem on [−π, π] and use both sets of
trigonometric functions {sinnx}∞n=1 ∪ {cosnx}∞n=0 (it is an exercise in trig to verify that this is an
orthogonal set). Hence, we are defining the truncated Fourier transform:

fn(x) =

∞∑
j=1

bj sin jx+

∞∑
j=0

cj cos jx, (33)

and we verify that

bj =
1

π

∫ π

−π
f(x) sin jxdx (34)

c0 =
1

2π

∫
f(x)dx (35)

cj =
1

π

∫ π

−π
f(x) cos jxdx j ≥ 1 (36)

This sequence will make a good approximation of nice smooth f ’s provided f(−π) = f(π) and
f ′(π) = f ′(−π), otherwise, it generally suffer like the sine transform and cosine transform. The
Fourier transform is such an important part of differential equations and image/signal processing
that a very clever and powerful algorithm was devised for computing the discrete versions of the
Fourier transform and also for rapidly computing fn(x) at specified grid points given the coefficients
bj and cj (the discrete inverse Fourier transform). This influential algorithm is called the fast Fourier
transform (always referred to as an FFT) and operates in roughly O(n2 log n) time. Logarithms are
pretty small, so this is only a little slower than doing a back substitution solve and is much faster
than something like a Cholesky factorization. If there’s time and interest at the end of the semester
I will discuss this algorithm.

Unfortunately, finding the approximation error for these least-squares approximations is a little
beyond the scope of the course, however, in many cases, the least-squares approximations built
via orthogonal polynomials and with Fourier series can converge exponentially. That is, if f is
smooth and satisfies boundary conditions matching our type of Fourier transform, we often get
error estimates of the form

‖f − fn‖L2 ≤ Ce−λn (37)

for some C, λ > 0. This is an absurdly fast convergence estimate, so there are lots of applications
where using approximation via orthogonal functions can be a great idea if its possible (these are
sometimes called ’spectral methods’ for reasons you will learn if you take Math 462). However, if
the function violates the boundary conditions or is not smooth, one can have slower convergence.
For example, if we consider the following function on [−π, π],

f(x) =

{
1 x ≥ 0

0 x < 0,
(38)

6

the convergence in L2 will be slow and moreover the approximations fn(x) will have strange os-
cillatory artifacts (for example fn(x) will take negative values somewhere for all n). The effort
to understand the convergence of Fourier series helped bring mathematical analysis into the mod-
ern age (for example, modern integration theory was devised by Lebesgue, in part, to study this
problem). More details will be discussed in a course on harmonic analysis and/or signal processing.

7

