
AMSC/CMSC 460 Midterm Exam 1 – Solutions
Tuesday, Feb 27th, 2018

You have 75 minutes to complete this exam. No Calculators or cheat sheets are allowed.
Submit each problem on a separate sheet. Show all work and explain your answers.

1. Recall a single precision floating point number x can be written as x = (.1d2 . . . d24)22
e

where −125 ≤ e ≤ 128. What is the smallest possible single precision floating point
number that is greater than 32? You may write your answer as sums of powers of 2.

Solution: In normalized form we can write 32 = (.10 . . . 0)26. Therefore the next floating point
number bigger than 32 is

(.10 . . . 01)26 = (2−1 + 2−24)26 = 25 + 2−18 ≈ 32.0000038146973

2. Consider the function

f(x) =
1− cosx

x2
.

It is easy to check that limx→0 f(x) = 1/2. However MATLAB will claim that f(x) = 0
for |x| any smaller than 10−8. Explain why this is the case (why specifically 10−8?).
Hint: Use the fact that εm ≈ 10−16 and cos(x) = 1− 1

2
x2 +O(x4).

Solution: The reason that MATLAB claims f(x) = 0 for 0 < |x| < 10−8 is because of cancellation in
the numerator and the associated loss of precision of 1−cosx. It is not due to underflow,
which only occurs for numbers below 2.2250738585072 ∗ 10−308. By the definition of
the machine epsilon εm MATLAB rounds off any precision below the machine precision.
Therefore εn/2 is negligable relative to 1 and

float(1 + 2−1εm) = 1.

Using the Taylor series for cosx this means that for small x, cos(x) ≈ 1− 1
2
x2. Therefore

if |x| < √εm ≈ 10−8 then

float(cos(x)) = float(1− 2−1εm) = 1.

It follows that for 0 < |x| < 10−8 MATLAB will compute

f̂(x) =
float(1)− float(1− 2−1εm)

float(x)2
=

1− 1

x2
= 0.

3. Consider the symmetric matrix

A =

 2 −1 0
−1 2 −1
0 −1 2





(a) Find the Cholesky factorization of A.

(b) Using the fact that A has a Cholesky factorization, show that A is a positive definite
matrix.

Solution: (a) To find the Cholesky factorization, we seek coefficients a11, a12, a13, a22, a23a33 such
that  2 −1 0

−1 2 −1
0 −1 2

 =

a11 0 0
a12 a22 0
a13 a23 a33

a11 a12 a13
0 a22 a23
0 0 a33


=

 a211 a11a12 a11a13
a11a12 a212 + a222 a12a13 + a22a23
a11a13 a12a13 + a22a23 a213 + a223 + a233.


This requires us to solve the equations

a211 = 2 a11a12 = −1 a11a13 = 0

a212 + a222 = 2 a12a13 + a22a23 = −1 a213 + a223 + a233 = 2

This gives

a11 =
√

2, a12 = − 1√
2

a13 = 0

a22 =
√

2− a212 =

√
3

2
, a23 = −1/a22 = −

√
2

3

a33 =
√

2− a213 − a223 =
2√
3

Therefore we have found a Cholesky factorization A = U>U, where U is given by

U =


√

2 − 1√
2

0

0
√

3
2
−
√

2
3

0 0 2√
3


(b) To show that A must be positive definite. We see that for any x 6= 0,

x>Ax = x>U>Ux = (Ux)>(Ux) = ‖Ux‖2

Positive definiteness now follows from the fact that all of the diagonals on U are
positive and therefore U is non-singular, meaning

x>Ax = ‖Ux‖2 > 0, for x 6= 0.

4. Let A be a square matrix and let c ∈ R be a scalar. Let ‖A‖ denote the natural matrix
norm induced from a vector norm and let κ(A) be the associated condition number. Prove
or disprove the following statements

(a) ‖cA‖ = |c| · ‖A‖
(b) κ(cA) = |c| · κ(A)



Solution: (a) This is true. By definition of the vector norm we know that for any vector x with
‖x‖ = 1

‖cAx‖ = |c| · ‖Ax‖
Taking the max of all such x on both sides of the above equality and using the
definition of the matrix norm gives

‖cA‖ = |c| · ‖A‖

(b) This is not true unless |c| = 1, c = 0 or κ(A) =∞ since, by definition and part(a)

κ(cA) = ‖cA‖ · ‖c−1A−1‖ = |c| · |c−1| · ‖A‖ · ‖A−1‖ = κ(A)

5. Let f be a function on [a, b] with infinitely many continuous derivatives. In the homework,
you showed that if x̄ is a double root (i.e. f(x̄) = 0, f ′(x̄) = 0, f ′′(x̄) 6= 0) then the error
for Newton’s method at step i, ei = xi − x̄, satisfies

ei+1 =
1

2
ei +O(e2i ).

What happens when x̄ is a triple root (i.e. f(x̄) = 0, f ′(x̄) = 0, f ′′(x̄) = 0, f ′′′(x̄) 6= 0)?
Give a formula relating ei+1 and ei to leading order in ei. What is the order of convergence
in this case?

Solution: The error at step i+ 1 is related to the error at step i by

ei+1 = ei −
f(x̄+ ei)

f ′(x̄+ ei)
= ei −

1
6
f ′′′(x̄)e3i +O(e4i )

1
2
f ′′′(x̄)e2i +O(e3i )

= ei −
2

6

f ′′′(x̄)

f ′′′(x̄)
ei +O(e2i ) =

2

3
ei +O(e2i ).

Therefore the order of convergence is still order 1 just as with the double root.

6. Write down the secant method and state its order of convergence.

Solution: The secant method is given by

xi+1 = xi −
f(xi)(xi − xi−1)
f(xi)− f(xi−1)

.

It’s order of convergence is the golden ratio φ = 1+
√
5

2
.

7. Four different methods were used to used to solve f(x) = 0 and the computed values
x1, x2, . . . are shown below:

i Method 1 Methods 2 Method 3 Method 4
1 1.10000000000000 1.02000000000000 1.05000000000000 1.03162277660168
2 1.01000000000000 1.00400000000000 1.02500000000000 1.00562341325190
3 1.00010000000000 1.00080000000000 1.01250000000000 1.00042169650343
4 1.00000001000000 1.00016000000000 1.00625000000000 1.00000865964323
5 1.00000000000000 1.00003200000000 1.00312500000000 1.00000002548297
6 1.00000000000000 1.00000640000000 1.00156250000000 1.00000000000407
7 1.00000000000000 1.00000128000000 1.00078125000000 1.00000000000000
8 1.00000000000000 1.00000025600000 1.00039062500000 1.00000000000000



(a) One of them is Newton’s method. Which of the four is most likely Newton’s method,
and why?

(b) One of them is the bisection method. Which of the four is most likely the bisection
method, and why?

Solution: (a) Method 1 is mostly likely Newton because of it’s quadratic convergence. Specifically
the error at each step is the square of the previous. All other methods are converging
sub-quadratically.

(b) Method 3 is bisection because of the fact that it converges linearly, and at each step
the error is divided by a factor of 2, which is a hall-mark of the bisection method.


