AMSC/CMSC 460 Midterm Exam 2 - Solutions

Tuesday, April 10th, 2018
You have 75 minutes to complete this exam. No Calculators or cheat sheets are allowed. Submit each problem on a separate sheet. Show all work and explain your answers.

1. Consider the data points | x | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | .5 | 1 | 2 | 4 |

(a) [15pts] Write the Lagrange form of the cubic interpolating polynomial $Q_{3}(x)$ for the above data.
Solution: The Lagrange form of $Q_{3}(x)$ is given by

$$
Q_{3}(x)=\sum_{i=0}^{3} f\left(x_{i}\right) \ell_{i}(x), \quad \ell_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

writing this out explicitly interms of the above data gives
$Q_{3}(x)=-\frac{x(x-1)(x-2)}{12}+\frac{(x+1)(x-1)(x-2)}{2}-(x+1) x(x-2)+2 \frac{(x+1) x(x-1)}{3}$
(b) [20pts] Write the Newton form of that same interpolating polynomial. Be sure to compute all divided differences.
Solution: We begin by writing out the divided difference table

x	$f\left(x_{i}\right)$	$f\left[x_{i}, x_{i+1}\right]$	$f\left[x_{i-1}, x_{i}, x_{i+1}\right]$	$f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$
-1	$1 / 2$	$1 / 2$	$1 / 4$	$1 / 12$
0	1	1	$1 / 2$	
1	2	2		
2	4			

The Newton form of $Q_{3}(x)$ is given by

$$
Q_{3}(x)=\sum_{i=0}^{3} f\left[x_{0}, \ldots, x_{i}\right] \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

which, using the values computed in the divided difference table, gives

$$
Q_{3}(x)=\frac{1}{2}+\frac{1}{2}(x+1)+\frac{1}{4} x(x+1)+\frac{1}{12} x(x+1)(x-1) .
$$

(c) [15pts] Using the fact that this sample was taken from the function $f(x)=2^{x}$, write an expression for the interpolation error $e(x)=f(x)-Q_{3}(x)$.
Solution: We know from class that for each $x \in[-1,2]$, there exists ξ_{x} belonging to $[-1,2]$ such that the error between $f(x)=2^{x}$ and $Q_{3}(x)$ is given by

$$
e(x)=f(x)-Q_{3}(x)=\frac{1}{4!} f^{(4)}\left(\xi_{x}\right)(x+1) x(x-1)(x-2)=\frac{(\ln (2))^{4}}{24} 2^{\xi_{x}}(x+1) x(x-1)(x-2)
$$

2. (a) [10pts] Write down a linear system for the coefficients a_{0}, a_{1}, a_{2} which define the quadratic polynomial $Q(x)=a_{0}+a_{1} x+a_{2} x^{2}$ that satisfies the conditions $Q\left(x_{0}\right)=y_{0}, Q^{\prime}\left(x_{1}\right)=y_{1}$, $Q^{\prime}\left(x_{2}\right)=y_{2}$.
Solution: The system of equations that satisfy these constraints is given by

$$
\begin{aligned}
a_{0}+a_{1} x_{0}+a_{2} x_{0}^{2} & =y_{0} \\
a_{1}+2 a_{2} x_{1} & =y_{1} \\
a_{1}+2 a_{2} x_{2} & =y_{2}
\end{aligned}
$$

(b) [20pts] Assuming $x_{1} \neq x_{2}$ solve this system for a_{0}, a_{1}, a_{2}. (Hint: Solve for a_{1} and a_{2} first).

Solution: The coefficients a_{1} and a_{2} satisfy a 2×2 linear sytem and can be solved first to obtain

$$
a_{1}=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}, \quad a_{2}=\frac{1}{2} \frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

we can then substitute the values for a_{1} and a_{2} to obtain a_{0}

$$
a_{0}=y_{0}-a_{1} x_{0}-a_{2} x_{0}^{2}=y_{0}-\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}} x_{0}-\frac{1}{2} \frac{y_{2}-y_{1}}{x_{2}-x_{1}} x_{0}^{2}
$$

3. Consider the weighted inner product

$$
\langle f, g\rangle_{e^{-x^{2}}}=\int_{0}^{\infty} f(x) g(x) e^{-x^{2}} \mathrm{~d} x
$$

(a) [15pts] Find the first two polynomials $P_{0}(x)$ and $P_{1}(x)$ which are orthogonal with respect to the above inner product.
Solution: We carry out the Gram-Schmidt orthogonalization procedure for this inner product. This gives

$$
P_{0}(x)=1, \quad P_{1}(x)=x-\frac{\int_{0}^{\infty} x e^{-x^{2}} \mathrm{~d} x}{\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x} P_{0}(x)=x-\frac{1}{\sqrt{\pi}}
$$

(b) $[\mathbf{1 5 p t s}]$ Find the corresponding weighted norm of each polynomial.

Solution: The norms are

$$
\left\|P_{0}\right\|_{e^{-x^{2}}}^{2}=\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2}
$$

and

$$
\begin{aligned}
\left\|P_{1}\right\|_{e^{-x^{2}}}^{2} & =\int_{0}^{\infty}\left(x-\frac{1}{\sqrt{\pi}}\right)^{2} e^{-x^{2}} \mathrm{~d} x \\
& =\int_{0}^{\infty}\left(x^{2}-\frac{2}{\sqrt{\pi}} x+\frac{1}{\pi}\right) e^{-x^{2}} \mathrm{~d} x \\
& =\frac{\sqrt{\pi}}{4}-\frac{1}{\sqrt{\pi}}+\frac{1}{2 \sqrt{\pi}}=\frac{\pi-2}{4 \sqrt{\pi}}
\end{aligned}
$$

(c) [20pts] Use these orthogonal polynomials to find the polynomial $Q_{1}(x)$ of degree ≤ 1 that minimizes

$$
\int_{0}^{\infty}\left(x^{2}-Q_{1}(x)\right)^{2} e^{-x^{2}} \mathrm{~d} x
$$

Solution: We know that the optimal polynomial is given by

$$
Q_{1}(x)=c_{0} P_{0}(x)+c_{1} P_{1}(x),
$$

where c_{0} and c_{1} satisfy

$$
c_{0}=\frac{\int_{0}^{\infty} x^{2} P_{0}(x) e^{-x^{2}} \mathrm{~d} x}{\left\|P_{0}\right\|_{e^{-x^{2}}}^{2}}=\frac{\sqrt{\pi} / 4}{\sqrt{\pi} / 2}=\frac{1}{2}
$$

and

$$
c_{1}=\frac{\int_{0}^{\infty} x^{2} P_{1}(x) e^{-x^{2}} \mathrm{~d} x}{\left\|P_{1}\right\|_{e^{-x^{2}}}^{2}}=\frac{4 \sqrt{\pi} \int_{0}^{\infty}\left(x^{3}-\frac{x^{2}}{\sqrt{\pi}}\right) e^{-x^{2}} \mathrm{~d} x}{\pi-2}=\frac{\sqrt{\pi}}{\pi-2}
$$

Therefore $Q_{1}(x)$ is

$$
Q_{1}(x)=\frac{1}{2}-\frac{1}{\pi-2}+\frac{\sqrt{\pi}}{\pi-2} x
$$

4. [20pts] Suppose you want to fit the following trigonometric polynomial

$$
h(x)=a \cos (x)+b \sin (x)+c \cos (2 x),
$$

to the data $\left(x_{i}, y_{i}\right), i=0,4$, given by $(0,1),(0,0),(\pi / 2,1),(\pi / 2,2),(\pi, 1)$ by finding a, b, c such that

$$
\sum_{i=0}^{4}\left(h\left(x_{i}\right)-y_{i}\right)^{2},
$$

is minimized. Write down, but do not solve, the normal equations associated to this leastsquares problem. (Simplify all matrix products involved).

Solution: We can start by writing least squares problem in terms of a matrix \mathbf{A}, and vectors $\mathbf{x}=(a, b, c)^{\top}$ and $\mathbf{y}=\left(y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right)^{\top}$. We have

$$
\sum_{i=0}^{4}\left(h\left(x_{i}\right)-y_{i}\right)^{2}=\|\mathbf{A} \mathbf{x}-\mathbf{y}\|^{2}
$$

where

$$
\mathbf{A}=\left[\begin{array}{lll}
\cos x_{0} & \sin x_{0} & \cos 2 x_{0} \\
\cos x_{1} & \sin x_{1} & \cos 2 x_{1} \\
\cos x_{2} & \sin x_{2} & \cos 2 x_{2} \\
\cos x_{3} & \sin x_{3} & \cos 2 x_{3} \\
\cos x_{4} & \sin x_{4} & \cos 2 x_{4}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]
$$

The normal equations associated with this least square system are

$$
\mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{y}
$$

Since

$$
\mathbf{A}^{\top} \mathbf{A}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 1 \\
0 & 2 & -2 \\
1 & -2 & 5
\end{array}\right]
$$

and

$$
\mathbf{A}^{\top} \mathbf{y}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 \\
-1
\end{array}\right]
$$

the normal equations are

$$
\left[\begin{array}{ccc}
3 & 0 & 1 \\
0 & 2 & -2 \\
1 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 \\
-1
\end{array}\right] .
$$

