
Intro to Numerical Linear Algebra for AMSC 460
Lecture 1

Prof. Jacob Bedrossian
University of Maryland, College Park

These notes will supplement the lectures on numerical linear algebra. NLA is one of the most
important, if not the most important, branches of numerical analysis. For many scientific computing
calculations, most of the compute time is spent doing linear algebra, and so doing NLA effectively
is crucial to useful code. Probably the best reference I’ve ever seen to introduce the topic of NLA is
the book Trefethen and Bau, but its too advanced to follow directly in AMSC 460. These notes are
a distillation of Bindle+Goodman’s notes on scientific computing and Trefethen and Bau’s book.

You all should have taken linear algebra before, but let’s just remind ourselves of the basics. A
matrix A ∈ Rn×n applied to a vector x ∈ Rn is realized by the formula:

Ax =

a11 · · · a1n
...

. . .
...

an1 · · · ann


x1

...
xn

 =

b1
...
bn

 , (1)

bi =
n∑

j=1

aijxj . (2)

This formula just says that the entry bi is the i-th row of the matrix A dotted with x – recall, if
x, y ∈ Rn are two vectors, the dot product is

x · y =

n∑
i=1

xiyi. (3)

One can (and should) view matrix multiplication (by a square matrix) as a geometric operation
which maps vectors in Rn to other vectors in Rn.

Matrix-matrix multiplication is given by:

AB =

a11 · · · a1n
...

. . .
...

an1 · · · ann


b11 · · · b1n

...
. . .

...
bn1 · · · bnn

 =

c11 · · · c1n
...

. . .
...

cn1 · · · cnn

 , (4)

cij =
n∑

k=1

aikbkj . (5)

Contemplation will reveal that the formula for AB is the same as saying that each column of AB
is just A applied to the corresponding column of B. Recall the very important fact that in general:
AB 6= BA, that is, matrices do not commute. This is not weird: most things in life do not commute
(I bet you have never tried eating an egg sandwich before frying the egg) – the fact that numbers
do commute is much more unusual.

1 O(n) and counting floating point operators

When assessing the work required to execute an algorithm, a very common measure is counting float-
ing point operations (abbreviated as ‘flop’). These are the addition, subtraction, multiplications,
and divides. For example, the assignment:

x = a ∗ b + 12

1

is 2 flops: one to multiply and one to add.
We normally are not interested in counting the exact number of flops. Any individual flop takes

an irrelevantly small amount of time on any modern computer. For linear algebra, this means we
generally only care about roughly how the number of flops depends on the dimension n of the
matrices and vectors we’re working with. For those who have not seen it before, let us recall the
following notion of O(np) notation.

Definition 1. For a function f(n) and a non-negative function g(n), we say f(n) = O(g(n)) as
n→∞ (pronounced “f is Big-Oh of g”) if there exists a constant C > 0 such that |f(n)| ≤ Cg(n)
for all n sufficiently large.

Example 1. If f(n) = 2n2−3n, we would have f(n) = O(n2). We would also have f(n) = n2+O(n),
which more formally means f(n)−n2 = O(n). The latter is a more specific characterization of how
f(n) grows in n.

Example 2. Let us estimate the number of flops required to do a matrix-vector multiplication.
Consider this formula: bi =

∑n
j=1 aijxj = ai1x1 + ai2x2 + · · · + ainxn. We have n multiplications

and n− 1 additions, hence, the cost of computing one entry of b is 2n− 1 flops. Since there are n
rows, that brings the total cost to

Cost(n) = (2n− 1)n = 2n2 − n. (6)

Hence, Cost(n) = 2n2 + O(n) and Cost(n) = O(n2).

Example 3. Since there are n columns in the matrix B ∈ Rn×n, we have that the cost of doing
the matrix-matrix multiply AB is Cost(n) = 2n3 − n2 = 2n3 + O(n2).

2 Linear systems

Let’s just remind ourselves of a little theory.

Definition 2. A matrix A ∈ Rn×n is called invertible if for every b ∈ Rn there is a unique x ∈ Rn

such that Ax = b. If A is invertible then there is a matrix A−1 ∈ Rn×n such that we can always
solve for x via x = A−1b.

Recall the theorem from linear algebra:

Theorem 1. Let A ∈ Rn×n. The following are equivalent:

1. The matrix A is invertible.

2. The range of A is the whole space: Range(A) = {y ∈ Rn : ∃x such that Ax = y} = Rn;

3. The nullspace of A is trivial: Null(A) = {x ∈ Rn : Ax = 0} = {0};

4. The determinant of A is zero: det(A) = 0.

Do not worry if you don’t remember how to compute a determinant, I think there is only one
case we need to remember (see below).

2

Definition 3. A matrix A is called lower triangular if all entries of the matrix above the diagonal
vanish:

A =


a11 0 0 · · · 0
a21 a22 0 · · · 0
...

...
an1 an2 an3 · · · ann

 (7)

A matrix A is called upper triangular if all entries of the matrix below the diagonal vanish:

A =


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
...

...
0 · · · 0 · · · ann

 (8)

It is easy for us to see when triangular matrices are invertible:

Theorem 2. Let A be triangular (either kind). Then det(A) = a11a22 · · · ann. Hence, a triangular
matrix is invertible if and only if aii 6= 0 for all 1 ≤ i ≤ n.

Assuming that A is indeed invertible, it is easy for us to solve the problem Ax = b for x (given
b and A) if A is triangular. Indeed, if A is lower triangular, then the linear system Ax = b is just
the set of equations

a11x1 = b1 (9)

a21x1 + a22x2 = b2 (10)

...
... (11)

an1x1 + an2x2 + · · ·+ annxn = bn. (12)

Hence, we first solve for x1:

x1 =
1

a11
b1, (13)

which then allows us to solve for x2:

x2 =
1

a22
(b2 − a21x1) , (14)

and so forth. The algorithm is then: for all j, 1 ≤ j ≤ n:

xj =
1

ajj

(
bj −

j−1∑
i=1

ajixi

)
. (15)

Note that the algorithm never fails as long as the diagonal entries are non-zero, which is the same as
A being invertible. Let us now calculate the number of flops. The inner calculation bj −

∑j−1
i=1 ajixi

costs 2(j − 1) flops: j − 1 multiplications and j − 1 subtractions. Hence, to calculate an entry of xj
we need to do 2(j − 1) + 1 flops (one more for the divide). This is done for each entry, and hence
we have

Cost(n) =
n∑

j=1

2(j − 1) + 1. (16)

3

Since we know the formula
∑n

j=1 j = 1
2n(n + 1), then we can compute exactly:

Cost(n) = n(n + 1) + 2n = n2 + 3n = n2 + O(n). (17)

More generally, we have the (more useful for our purposes) estimate for p ≥ 1:

n∑
j=1

jp =
np+1

p + 1
+ O(np). (18)

Hence, the cost of computing x is essentially the same as doing a single matrix-vector multiply of
the lower triangular matrix (since half the entries are zero, if A is lower triangular, then the cost of
computing Ax will be n2 + O(n) flops, rather than 2n2 + O(n) flops). This is very efficient!

4

	O(n) and counting floating point operators
	Linear systems

