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These notes will supplement the lectures on numerical linear algebra. NLA is one of the most
important, if not the most important, branches of numerical analysis. For many scientific computing
calculations, most of the compute time is spent doing linear algebra, and so doing NLA effectively
is crucial to useful code. Probably the best reference I’ve ever seen to introduce the topic of NLA is
the book Trefethen and Bau, but its too advanced to follow directly in AMSC 460. These notes are
a distillation of Bindle+Goodman’s notes on scientific computing and Trefethen and Bau’s book.

1 LU factorization with partial pivoting

The algorithm we discussed before is not really usable. For example, if we attempt to solve the
simple linear system: (

0 1
1 1

)(
x1
x2

)
=

(
b1
b2

)
,

our algorithm will fail immediately when it tries to divide by zero. This system is easily solvable
by hand, there is no pathology at all. The situation is in some ways even worse if one considers the
very similar (also quite benign) matrix (this example is from Trefethen and Bau),

A =

(
10−20 1

1 1

)
Our algorithm will produce the LU factorization

L =

(
1 0

1020 1

)
, U =

(
10−20 1

0 1 − 1020

)
.

This is indeed an LU factorization of A. However in floating point arithmetic, the 1 − 1020 would
get rounded to −1020, since the 1 is more than 16 orders of magnitude smaller than 1020. Hence,
our numerical algorithm would return two approximations for L and U :

L̃ =

(
1 0

1020 1

)
, Ũ =

(
10−20 1

0 −1020

)
.

However, that 1 was important, since

L̃Ũ =

(
10−20 1

1 0

)
which is not even remotely close to A.

We learned how to resolve this issue when we first learned Gaussian elimination in introductory
linear algebra. We should choose more wisely which rows we use to do the eliminating. The easiest
and standard way of doing this is called partial pivoting. The idea is that instead of blindly trying
to eliminate with whatever happens to be in the diagonal at the k − th step, we will judiciously
choose a row we want to use to eliminate all the others simply by the intuition that we want to
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divide by big numbers rather than little numbers. Before writing pseudo-code, lets see what this
could mean in action: suppose we want to factorize this matrix:

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 . (1)

At the start of the algorithm, we write

L = I, U = A. (2)

We like the idea of dividing by large numbers however, so we are going to swap the first and the
third rows:

U = P1A =


8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8

 ,

where

P1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .

Now, we want to perform a row elimination step, so just like in the previous algorithm we set the
first column of L:

L =


1 0 0 0
1
2 1 0 0
1
4 0 1 0
3
4 0 0 1

 ,

U =


8 7 9 5
0 −1

2 −3
2 −3

2
0 −3

4 −5
4 −5

4
0 7

4
9
4

17
4

 .

At this step, we want to use the 7/4 to eliminate the rest of the subdiagonal in the second column,
so this means we have to again permute the rows. So we want to set

U = P2


8 7 9 5
0 −1

2 −3
2 −3

2
0 −3

4 −5
4 −5

4
0 7

4
9
4

17
4

 ,

P2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
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and hence after the second permutation, we have

U =


8 7 9 5
0 7

4
9
4

17
4

0 −3
4 −5

4 −5
4

0 −1
2 −3

2 −3
2

 .

The extra tricky part is to figure out what to do with L. If you think about it for a while, since
we just swapped the rows of U , it makes sense to swap the rows of L in the columns that we have
already set. This is because L is a record of the row-elimination operations we did. If we swap
the corresponding rows, that swaps the order of the row eliminations, but it doesn’t really change
anything else about them. The row operations are still row operations associated with a lower
triangular matrix. Hence, it makes sense if we could just make the following our new L:

L =


1 0 0 0
3
4 1 0 0
1
4 0 1 0
1
2 0 0 1

 ,

and then continue on with the algorithm as if nothing happened and set the new column of L to do
the corresponding row elimination step to U and update L and U accordingly:

L =


1 0 0 0
3
4 1 0 0
1
4 −3

7 1 0
1
2 −2

7 0 1

 , U =


8 7 9 5
0 7

4
9
4

17
4

0 0 −2
7 −4

7
0 0 −6

7 −2
7


This actually will work (see below). Then, we are going to apply the last permutation to swap the
last two rows:

P3 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

and apply P3 to U to update U as

U =


8 7 9 5
0 7

4
9
4

17
4

0 0 −6
7 −2

7
0 0 −2

7 −4
7

 ,

and we would update L accordingly like last time, permuting only the row operations that were
already computed:

L =


1 0 0 0
3
4 1 0 0
1
2 −2

7 1 0
1
4 −3

7 0 1
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Then we apply the final elimination and end up with

L =


1 0 0 0
3
4 1 0 0
1
2 −2

7 1 0
1
4 −3

7
1
3 1

 , U =


8 7 9 5
0 7

4
9
4

17
4

0 0 −6
7 −2

7
0 0 0 2

3

 .

Did we succeed in factorizing A? Nope, not at all! However, what we did succeed in factorizing is:

P3P2P1A = LU. (3)

Indeed, denoting P = P3P2P1, we have computed the LU factorization of the following matrix:

PA =


8 7 9 5
6 7 9 8
4 3 3 1
2 1 1 0

 = LU.

It might seem a bit magical that it worked out like that, and verifying that the above algorithm
will always give exactly this (a row permutation matrix P and an LU factorization PA = LU) is
not very obvious. Proving it carefully is pretty cumbersome and is more than a little confusing, so I
will skip this and we will be settled with the intuition behind the algorithm. Specifically, the main
unclear step to the algorithm is how we are supposed to be permuting L as we go, and this is kind
of the crux of why things work.

If we believe that the above algorithm works, then we can use it very effectively. If we want
to solve Ax = b, then we use the above algorithm to compute P,L,and U and solve instead the
problem

LUx = Pb, (4)

which is done by first solving Ly = Pb and then Ux = y with the forward and back substitution
algorithms. This will be our plan.

In practice there are several ways one can represent P . One way (not a great way) is to simply
represent it directly as a matrix of 0’s and 1’s and each step do a matrix multiply to update it.
However, computing the associated matrix multiplications by brute force will actually be slower
than the entire factorization process (and you should know how to show that!). A smarter and very
simple way is to store the list of permutations as pairs in an ordered list, so that the sequence of
row permutations can be recovered to apply to b whenever necessary. This only requires storing 2n
integers, requires essentially no calculation, and computing Pb in the end would only require O(n)
operations (essentially free compared to the rest of the computations being done). A similar (and
arguably even smarter) method is to store the final re-arrangement of rows, that is a list of n integers
which records how to map the original rows to the final rows. Each step of the algorithm this could
be updated as one continues, without having to remember the exact sequence of permutations being
done. My pseudo-code will do the second option, as this is a reasonable balance between being very
easy and still efficient.

Algorithm 1 (LU decomposition with partial pivoting – intermediate level LU factorization). I
will use #’s to denote inline comments. This is pseudo-code, not quite actual computer code.

U=A, L=I, P={} #P will be an ordered list of pairs

for k=1 to n-1:
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Find p, k <= p <=n such that |U[p,k]| >= |U[q,k]| for all k <= q <= n

Swap the rows U[p,:] and U[k,:]

Swap the first k-1 elements of L[p,:] with the first k-1 elements of L[k,:]

Add (p,k) to the list P.

for j=k+1 to n: #Now we do regular elimination step

L[j,k] = U[j,k]/U[k,k]

for i=k to n:

U[j,i] = U[j,i] - L[j,k]*U[k,i]

Note that to compute Pb with the above representation of the permutations we can just do:

for (k,p) in P:

swap b[k] and b[p]

Hence, this method requires 2n integers stored1 and each application requires n floating point
swaps...These are not really “floating point operations” per se, but it can be useful to count opera-
tions like that if you are doing a lot of them as they can take a lot of time as well2 Thankfully, in our
context, this O(n) operation will be totally irrelevant to the 2

3n
3 + O(n2) cost of our factorization

or the O(n2) cost of our backwards and forwards substitution solves.

1In certain high performance situations it is important to be very miserly with memory allocations (as well as
taking care about precisely when and precisely how such memory is allocated – hence the interest in using very
explicit languages such as C/C++ in scientific computing.

2If you learn parallel algorithms you will find that in some situations, the computer wastes more time moving stuff
around and communicating between different processors than it actually does doing flops.

5


	LU factorization with partial pivoting

