
Intro to Numerical Linear Algebra for AMSC 460
Lecture 4

Prof. Jacob Bedrossian
University of Maryland, College Park

These notes will supplement the lectures on numerical linear algebra. NLA is one of the most
important, if not the most important, branches of numerical analysis. For many scientific computing
calculations, most of the compute time is spent doing linear algebra, and so doing NLA effectively
is crucial to useful code. Probably the best reference I’ve ever seen to introduce the topic of NLA is
the book Trefethen and Bau, but its too advanced to follow directly in AMSC 460. These notes are
a distillation of Bindle+Goodman’s notes on scientific computing and Trefethen and Bau’s book.

1 Cholesky factorization

Next we will learn a very simple but powerful variant of LU factorization that works on very special
matrices.

Definition 1. A matrix A ∈ Rn×n is symmetric if A = AT .

Definition 2. A matrix A ∈ Rn×n is positive definite if for all x ∈ Rn with x 6= 0, there holds
x ·Ax = xTAx > 0.

A matrix A is (of course) called symmetric positive definite, abbreviated SPD, if it is both
symmetric and positive definite. One easy consequence of being positive definite is the following.

Lemma 1. If A is positive definite, then any diagonal element of A is strictly positive: ajj > 0 for
all 1 ≤ j ≤ n.

Proof. Let ej ∈ Rn be a vector which is zero in every entry except for the j− th coordinate and the

j-th coordinate is equal to one (e.g. e1 =

(
1
0

)
and so forth). Then, from matrix multiplication,

eTj Aej = ajj .

By positive definiteness, this must be positive.

Let us consider specializing the Gaussian elimination algorithm to an SPD matrix A for which
the first diagonal element is equal to one:

A =


1 −− wT −−
|
w K
|

 ,

where here w ∈ Rn−1×1 and K ∈ Rn−1×n−1. Note that necessarily K = KT since A = AT . The
first of the LU factorization would do the elimination of subdiagonal column w:

A =


1 0 · · · 0
|
w I
|




1 −− wT −−
|
0 K − wwT

|

 .

1

Here I ∈ Rn−1×n−1 denotes the identity matrix. Note that wwT is a matrix for which the i, j
element is:

(wwT)ij = wiwj .

Note also that (wwT)x = (wTx)w. This first step is exactly the first step of the LU factorization,
just written in block matrix form. Now, we are going to use symmetry to also factor out a matrix
from the right:

A =


1 0 · · · 0
|
w I
|




1 −− 0−−
|
0 K − wwT

|




1 −− wT −−
|
0 I
|


= RT

1 A1R1.

Hence, we could symmetrically factor the matrix. This suggests that if we have a non-zero element
in the diagonal, we should split it evenly between the left and right matrices so that they are again
just transposes of eachother:

A =


√
a11 0 · · · 0
|

w/
√
a11 I
|




1 −− 0−−
|
0 K − wwT

a11
|



√
a11 −− wT /

√
a11 −−

|
0 I
|


= RT

1 A1R1. (1)

Again, this is not morally really any different from the normal LU factorization algorithm, and the
point of doing this is not yet clear. Note that from the lemma above, a11 > 0 since A is positive
definite.

Next, what we want to do is to continue the algorithm, now applying the same idea to the
sub-matrix K − wwT

a11
. This requires the following observation, which is not obvious.

Lemma 2. If A is SPD, then so is the sub-matrix K − wwT

a11
.

Proof. Since (wwT)T = wwT , it follows that the sub-matrix is symmetric.
Let u ∈ Rn−1 be non-zero. We want to prove that:

uT
(
K − wwT

a11

)
u > 0.

Define the vector y ∈ Rn via:

y =


0
u1
...

un−1

 .

Then we observe that

uT
(
K − wwT

a11

)
u = yTA1y,

2

where A1 is defined up in (1). The matrix R1 is invertible: it is upper triangular, so we can compute
that the determinant is det(R1) =

√
a11 6= 0. Hence, we can define x = R−1

1 y and so

yTA1y = (R1x)TA1(R1x) = xT (RT
1 A1R1)x = xTAx.

Note that since R1 is invertible and y 6= 0, it follows that x 6= 0 as well. Summing up, we have

uT
(
K − wwT

a11

)
u = xTAx > 0,

and so the proof is complete.

Therefore, we can do the same symmetric elimination step on the sub-matrix as we did on A.
That is, if we write

K − wwT

a11
=


u22 −− vT −−
|
v K(2)

|

 ,

then we further eliminate via:

A = RT
1 R

T
2


1 0 · · · 0
0 1 0 · · ·
0 0

| | K(2) − vvT

u11

0 0

R2R1

= RT
1 R

T
2 A2R2R1,

where

RT
2 =


1 0 · · · · · · 0
0
√
u22 0 · · · 0

... |

... v/
√
u22 I

0 | · · ·


Observe actually that

RT
1 R

T
2 =


√
a11 0 · · · · · · 0
| √

u22 0 · · · 0
| |

w/
√
a11 v/

√
u22 I

| | · · ·

 , (2)

which is analogous to what happens in the LU factorization algorithm. Now, it makes sense what
we are going to do: we will continue eliminating on the submatrices until we only have the identity
left:

A = RT
nR

T
n−1...R

T
1 IR1R2...Rn = RTR,

R := R1R2...Rn.

3

Hence, we have factored A into a lower triangular matrix RT and an upper triangular matrix R,
just like LU , except that here the lower and upper pieces are just transposes of each-other.

The Cholesky factorization has two advantages over LU : firstly, and maybe most importantly,
it turns out (for reasons beyond the scope of this course), that we never have to do any pivoting
and we still have a very stable factorization algorithm. This makes the implementation of Cholesky
factorizations much simpler and more reliable. Secondly, symmetric matrices contain roughly half
the amount of information as non-symmetric matrices (for a non-symmetric matrix, we have to
have both L and U , but for an SPD matrix, we just need to keep R). Hence, we should be able to
write a Cholesky factorization which runs in about half the time as an LU factorization. That is,
we should expect to be able to find an algorithm which only costs 1

3n
3 + O(n2). This does indeed

turn out to be the case.
The pseudo-code will actually build R row-by-row, but remember that this is the same as

building RT column by column, so it still is the same as LU . Moreover, since A is symmetric, we
will only need to look at half the matrix. We will look at the top half, but of course one could write
the algorithm to look at the other half.

Algorithm 1 (Cholesky factorization). The pseudo-code assumes vectors are indexed from one.

R = A

for k = 1 to n: #loop over diagonals

for j=k+1 to n: #apply elimination step to submatrix

b = R[k,j]/R[k,k]

for i = j to n:

R[j,i] = R[j,i] - b*R[k,i]

R[k,k:n] = R[k,k:n]/(R[k,k])^{1/2} #Set next row of R

I will leave it as an exercise to you to compute that the cost in flops is Cost(n) = 1
3n

3 + O(n2).

4

	Cholesky factorization

