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In these notes we discuss the problem of numerical differentiation. Recall that from Taylor’s
theorem the formula:

f ′(x) =
f(x+ h)− f(x)

h
+O(h) (1)

Formulas of this type are called finite difference formulas. This specific formula is called the first
order forward difference. The “first order” refers to the 1 in O(h1), and hence specifies the accuracy.
The “forward” refers to the fact that the formula for f ′(x) only uses values of f at points to the
right of y. The first order backward difference is

f ′(x) =
f(x)− f(x− h)

h
+O(h) (2)

The second order central difference is

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2). (3)

For all three formulas, one can verify the accuracy by just Taylor expanding everything around x
and cancelling terms. However, if one wants to derive higher order finite difference formulas, you
can imagine that this gets quickly a mess. It is useful to think about the geometric interpretation
of these formulas. The formula (1) is the slope of the line that goes through the points (x, f(x)),
(x+ h, f(x+ h)) whereas (2) is the slope of the secant line that goes through the points (x, f(x)),
(x−h, f(x−h)), and (3) is the slope of the secant line that goes through the points(x−h, f(x−h)),
(x + h, f(x + h)). This gives us one good idea for deriving further schemes. Suppose cj are given
for 1 ≤ j ≤ ν and we are interested in finding a finite difference formula of the form:

1

h

ν∑
j=1

ajf(hcj) = f ′(0) +O(hp), (4)

for some p ≥ 1. Notice that it suffices to only care about x = 0, this would give us the following
formula by translation:

1

h

ν∑
j=1

ajf(x+ hcj) = f ′(x) +O(hp), (5)

A natural guess is to define the ν−1 degree polynomial which goes through the points (x+hcj , f(x+
hcj)), call it Qν−1, and find aj such that

Q′(0) =
1

h

ν∑
j=1

ajf(hcj). (6)

Recall that we can write down the Lagrange form of Q “explicitly”:

Q(x) =
ν∑
j=1

f(hcj)
Πn
i=1,i 6=j(x− hci)

Πn
i=1,i 6=j(xj − hci)

. (7)
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Hence, we have

Q′(x) =

ν∑
j=1

f(hcj)
d

dx

(
Πn
i=1,i 6=j(x− hci)

Πn
i=1,i 6=j(hcj − hci)

)
. (8)

Therefore we have a candidate formula for how to pick the aj ’s:

aj = h
d

dx

(
Πν
i=1,i 6=j(x− hci)

Πν
i=1,i 6=j(hcj − hci)

)
|x=0. (9)

If you think about it for a bit, you’ll see that aj is independent of h. To see this, expand the
polynomial for some coefficients pj independent of h such that:

Πν
i=1,i 6=j(x− hci) =

ν−1∑
k=0

pkh
ν−k−1xk. (10)

Hence,

aj =
p1

Πν
i=1,i 6=j(cj − ci)

. (11)

Note if we choose aj like this, we will get the difference formula:

1

h

ν∑
j=1

ajf(hcj) = f ′(0) +O(hp), (12)

hopefully for some p ≥ 1. Now, of course this is not a pretty or very explicit formula (you can
compute p1 explicitly in terms of the cj ’s but its still ugly), The above gives us an algorithm for
determining the coefficients of a finite difference formula regardless of how we choose cj , though
in the vast majority of cases, finite difference formulas are used where c′js are integers (positive
or negative). However, one can be more general, for example, if one needs to adapt the accuracy
of your formula to x, you might want to use different h’s at different x’s. This will lead to more
complicated formulas (that you can compute with some effort, or in many cases, program your
computer to compute). Now, if I give you a higher order difference scheme, for example,

f ′(x) =
− 1

12f(x+ 2h) + 2
3f(x+ h)− 2

3f(x− h) + 1
12f(x− 2h)

h
+O(h4), (13)

you could in theory at least, expand every term out to 5th order using Taylor’s theorem and match
up terms until you verified that the formula is indeed 4-th order accurate. However, there’s a more
direct method, which is the following theorem.

Theorem 1. Let aj and cj be such that for all polynomials of degree ≤ m, there holds

ν∑
j=1

ajp(cj) = p′(0). (14)

Then,

1

h

ν∑
j=1

ajf(hcj) = f ′(0) +O(hm). (15)
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Proof. By Taylor’s theorem,

f ′(hcj) =

m∑
k=0

f (k)(0)

k!
(hcj)

k +O(hm+1). (16)

Define the m-degree polynomial:

p(x) =
1

h

m∑
k=0

f (k)(0)

k!
(hx)k, (17)

which implies

1

h

ν∑
j=1

ajf(hcj) =
ν∑
j=1

ajp(cj) +O(hm). (18)

Then by the assumption (14),

ν∑
j=1

ajp(cj) = p′(0). (19)

Finally, we observe,

p′(x) =
1

h

m∑
k=1

f (k)(0)k

k!
hkxk−1 =

m∑
k=1

f (k)(0)

(k − 1)!
hk−1xk−1 = f ′(0) +

m∑
k=2

f (k)(0)

(k − 1)!
hk−1xk−1. (20)

Hence,

p′(0) = f ′(0). (21)

The result then follows from (18).

Using Theorem 1, we can deduce the following.

Theorem 2. The finite difference formula (12) is satisfied for p ≥ ν − 1.

Proof. By construction, if p is at most a ν−1 degree polynomial, then the interpolating polynomial
Q = p.

There are three general classes which come up often. Forward one-sided differences:

f ′(x) =
1

h

ν∑
j=1

ajf(x+ hj) +O(hν−1), (22)

backward one-sided differences:

f ′(x) =
1

h

ν∑
j=1

ajf(x− hj) +O(hν−1), (23)

and central differences: for even ν ≥ 2,

f ′(x) =
1

h

ν/2∑
j=1

aj (f(x+ hj)− f(x− hj)) +O(hν). (24)
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Let us see why the accuracy is O(hν) as opposed to O(hν−1) as one might expect. First observe
that for all even polynomials p of any degree:

0 = p′(0) =

ν/2∑
j=1

aj (p(j)− p(−j)) . (25)

Now, we choose aj so that (14) holds for as many odd polynomials as possible. For p(x) = x, this
gives the constraint:

1 =

ν/2∑
j=1

2jaj . (26)

For p(x) = x2p+1 with p ≥ 0, (14) gives

ν/2∑
j=1

2j2p+1aj =

{
1 p = 0

0 p ≥ 1.
(27)

We have ν/2 unknowns and therefore we can form a square linear system for the aj ’s by requiring
they satisfy (27) for p ≤ ν/2−1. The linear system has a unique solution by the arguments we made
when we studied interpolation, so we can uniquely choose aj so that (27) holds for p ≤ ν/2 − 1.
Therefore,

p′(0) =

ν/2∑
j=1

aj (p(j)− p(−j)) , (28)

holds for all odd polynomials of degree ≤ ν − 1. However, we have already seen that the formula is
automatically exact for all even polynomials and hence (28) holds for all polynomials of degree less
than or equal to ν and Theorem 1 implies the error estimate stated in (24).

Richardson Extrapolation

There is another technique for deriving the central difference schemes which has its uses in other
branches of numerical analysis (including, for example, numerical integration). This is called
Richardson extrapolation. It is easiest to just explain the basic idea with an example. By Tay-
lor’s theorem, we have the following (which is less annoying to derive than it looks):

f ′(x) =
f(x+ h)− f(x− h)

2h
+

[
f (3)h2

3!
+
f (5)h4

5!

]
+O(h6). (29)

Of course, then also means that:

f ′(x) =
f(x+ 2h)− f(x− 2h)

4h
+

[
f (3)(2h)2

3!
+
f (5)(2h)4

5!

]
+O(h6). (30)

However, this means we can cleverly combine the formulas to cancel the leading order term in the
error:

f ′(x) =
4

3

(
f(x+ h)− f(x− h)

2h

)
− 1

3

(
f(x+ 2h)− f(x− 2h)

4h

)
+O(h4). (31)
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This therefore gives an alternative derivation of (13). If one is intrepid and motivated, its clear
that one can continue this procedure to recover all of the central difference formulas. This is also a
general idea that is useful in many settings: if you know the leading order expansion of the error
term, then you can combine discretizations at different choices of h in a clever way to cancel it
out and obtain higher order accuracy. The general concept is called Richardson extrapolation. One
of the advantages is that you don’t really need to explicitly compute (13), you really just need to
combine the answers from your second order approximations as in (31). This isn’t staggeringly
useful in this example but it can be convenient in certain settings.

Higher order derivatives

The ideas put forward for first derivatives are easily extended (at least with a little technical
calculation), to higher order derivatives. In particular, we have the theorem:

Theorem 3. Suppose that the following formula holds for all polynomials of degree ≤ m+ q − 1:
ν∑
j=1

ajp(cj) = p(q)(0). (32)

Then,

1

hq

ν∑
j=1

ajf(hcj) = f (q)(0) +O(hm). (33)

Proof. The proof is similar, but lets do it so we can see how the q turns up where it does:

1

hq

ν∑
j=1

ajf(hcj) =
1

hq

ν∑
j=1

aj

m+q−1∑
k=0

f (k)(0)

k!
(hcj)

k +O(hm). (34)

Then set

p(x) =
1

hq

m+q−1∑
k=0

f (k)(0)

k!
(hx)k. (35)

Computing the q-th derivative efficiently will require some thought if you haven’t seen it before,
but if you work it through, you’ll get

p(q)(x) =
1

hq

m+q−1∑
k=q

f (k)(0)

k!
hkk(k − 1)...(k − q + 1)hkxk−q =

m+q−1∑
k=q

f (k)(0)

(k − q)!
(hx)k−q. (36)

Hence,

p(q)(0) = f (q)(0). (37)

The above theorem suggests we might need a lot more points to get decent approximations. For
this, central differences are even more useful. The standard way of computing second derivatives is

f ′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2). (38)

By Richardson extrapolation or by considering even and odd polynomials again, you can derive the
4-th order approximation:

f ′(x) =
1

h2

(
− 1

12
f(x− 2h) +

4

3
f(x− h)− 5

2
f(x) +

4

3
f(x+ h)− 1

12
f(x+ 2h)

)
+O(h4). (39)
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