Qopere P O

GOP%*L%WC 2007

Chapter 1
Errors and Arithmetic

What better place to start a book than with error! We need to know how errors
arise, how they are propagated in calculations, and how to measure and bound

€ITors.

1.1 Sources of Error

Suppose an engineer wants to study the stresses in a bridge. The study would be-
gin by gathering some data, including the lengths and angles for the girders and
wires and the material properties for each component. There is some measure-
ment error, though, since no measuring device gives full precision. Therefore, the
measurements would typically be recorded as a value plus or minus an uncertainty.
The engineer would then need to model the stresses on the bridge. The bridge
might be approximated by a “finite element model”, for example, and this is an
additional source of error. Simplifying assumptions might be made; for example,
we might assume that the material in each girder is homogeneous. Modeling error
is the result of the difference between the true bridge and our computable model.
Now we have a mathematical model and we need to compute the stresses. If
the model is large or nonlinear, then a numerical analyst might develop an algorithm
that computes the solution as
lim G(n)
n—o0

where, for example, G(n) might be the result of n iterations. In general, we can’t
take this limit on a computer, so we might decide that G(150) is good enough. This
introduces truncation error.

Finally, we implement the algorithm and run it on our favorite computer. This
introduces additional error, since we don’t compute with real numbers but with
finite-precision numbers: a fixed number of digits are carried in the computation.
The effect of this is roundoff error.

Therefore, the results obtained for the stresses on the bridge are contaminated
by these four types of error: measurement error, modeling error, truncation error,

b

6 Chapter 1. Errors and Arithmetic

and roundoff error. It is important to note that no mistakes were made:
o The engineer did not misread the measurement device.
o The model was a good approximation to the true bridge.
¢ The programmer did not type the value of n incorrectly.
o The computer worked flawlessly.

But at the end of the process, the engineer needs to ask what the computed solution
has to do with the stresses on the bridge!

1.2 Computational Science and Scientific Computing

In order to answer the question posed at the end of the previous section, we re-
quire several types of expertise. We use science and engineering to formulate the
problem and determine what data is needed. We use mathematics and statistics
to design the model. We use numerical analysis to design and analyze the algo-
rithms, develop mathematical software, and answer questions about how accurate
the final answer is. Therefore, our project could easily involve an interdisciplinary
team of four or more experts; see Figure 1.1. Often, though, if the model is more
or less routine, one person might fill all roles.

A computational scientist is a team member whose focus is on scientific
computing: intelligently using mathematical software to analyze mathematical
models. To do this requires a basic understanding of how computers do arithmetic.

1.3 Computer Arithmetic

Computers use binary arithmetic, representing each number as a binary num-
ber, a finite sum of integer powers of 2. Some numbers can be represented exactly,
but others, such as 1/10, 1/100, 1/1000, ..., cannot. For example, in binary,

2.125 = 2! + 273
has an exact representation, but
3lm2t 42042744275 98 4.,

does not. And, of course, there are numbers like 7 that have no finite representation
in either our usual decimal number system or in binary.

Computers use two formats for numbers. Fixed-point numbers are used to
store integers. Typically, each number is stored in & computer word consisting
of 32 binary digits (bits) with values 0 and 1. Therefore, at most 232 different
numbers can be stored. If we allow for negative numbers, then we can, for example,
represent integers in the range —23! < z < 23! —1. Since 23! &~ 2.1 x 10%, the range
for fixed-point numbers is too imited for scientific computing. Therefore, they are
used mostly for indices and counters.

athematica
Software

Figure 1.1. Computational science involves knowledge from many disciplines.

An alternative to fixed-point numbers is floating-point numbers, which ap-
proximate real numbers. We'll discuss features of the most common floating point
number system, the IEEE Standard Floating Point Arithmetic.

The format for a floating point number is

T =+zx2P

where z is called the mantissa or significand This representation is not unique;

for example,
1x22=4x2°=8x2"L,

Therefore we make the rule that if x # 0, we normalize so that 1 < z < 2, chosing
the first of the three alternatives in the example.

8 Chapter 1. Errors and Arithmetic

POINTER. 1.1. Modeling the Error.

Developing a realistic understanding of the errors in the data is often the most
challenging part of scientific computing. If you are solving a spectroscopy problem,
for example, ideally you would first want to take a sample for which the composition
is known and obtain several sets of sample data from the spectrometer. Using that
data, you could develop a model for the error and see how your algorithms behave.

POINTER. 1.2. Matrix and Vector Notation.
Throughout this hook we use the following notational conventions:

+ All vectors are column vectors.

» Matrices are denoted by boldface upper case letters; vectors are boldface lower
case.

¢ The elements of a matrix or vector are denoted by subscripted values: the
element of A in row ¢ and column 7 is a;; or A(%,).

s The elements of matrices and vectors can be real or complex numbers.
o Iis the identity matrix and e; is the ¢th unit vector, the ith column of I
¢ B= AT means that B is the transpose of A: b;; = a;.

e B = A” means that B is the complex conjugate transpose of A: b;; = a;;,
where the bar denotes complex conjugate. If A is real, then A* = 4",

o We'll use MATLAB notation when convenient. For example, A(i : j, &k : &)
denotes the submatrix of A with row entries between 7 and j and column
entries between k and £ (inclusive), and A(:, 5) denotes column 5 of the matrix

A.

To fit a floating point number in a single word, we need to limit the number of
digits in the mantissa and the exponent. For these single-precision numbers, 24
digits are used to represent the mantissa, and the exponent is restricted to the range
—126 < p < 127. This allows us to represent numbers as close to zero as 1.18x 10~38
and as far as 1.70 x 108, a considerably larger range than for fixed-point.

If this range is not large enough, or if 24 digits of precision are not enough,
we turn to double-precision numbers, stored in two words, using 53 digits for
the mantissa, with an exponent —1022 < p < 1023. This allows us to represent
numbers as close to zero as 2.23 x 107398 and as large as 8.98 x 10307,

If we perform a computation in which the exponent of the answer is outside

1.3. Computer Arithmetic 9

the allowed range, we have a more or less serious error.

s If the exponent is too big, then we cannot store the answer, and our com- .
" putation has produced an overflow error. The answer is set to a special
representation called Inf or -Inf to signal an error.

¢ If the exponent is too small, then the computation produced an underflow,
and the default is to set the answer to zero.

o If we divide zero by zero, then the answer is set to a code indicating not-a-
number, NaN.

In double precision, at most 254 different numbers can be represented (in-
cluding NaN and +Inf) so any other number must be approximated by one of
the representable numbers. For example, numbers in the range 1 4+27%2 < 2 <
14 (2752 4-2753) might be rounded to x,, = 1+2752, which can be represented ex-
actly. This introduces a very small error: the absolute error in the representation
is

|T — | < 2758,
Similarly, numbers in the range 1024 + 274 < z < 1024 + (2742 + 27%3) might
be rounded to z,, = 1024 + 2~%2, with absolute error bound 243, which is 1024
times bigger than the bound for numbers near 1. In each case, though, the relative

error
|z — Zm]

l=|
is bounded by 275% when 53 digits are used for the mantissa.
Let’s stop and consider the difference between the fixed point number system
and the floating point number system.

CHALLENGE 1.1. For each machine-representable number r, define £(z) to be
the next larger machine-representable number. Consider the following statements:

(a) For fixed point (integer) arithmetic, the distance between r and £ (r)

is constant.
{b) For floating point arithmetic, the relative distance | (£ (x)-x)/r!l is

constant (for r # 0).

Are the statements true or false? Give examples or counterexamples to explain your
reasoning.

This brings us to a very important parameter that characterizes machine pre-
cision: machine epsilon €, is defined as the gap between 1 and the next bigger
number; for double precision, €, = 2752, The relative error in rounding a number

10 Chapter 1. Errors and Arithmetic

POGINTER 1.3. Floating point precision.
By default, MATLAB computes using double-precision Hoating point numbers, and
that is what we use in all of our computations.

POINTER 1.4. IEEE Standard Floating Point Arithmetic.

Up until the mid-1980s, each computer manufacturer had a different representation
for floating point numbers and different rules for rounding the answer to a compu-
tation. Therefore, & program written for one machine would not compute the same
answers on other machines.

The situation improved somewhat with the introduction in 1987 of the IREE stan-
dard floating point arithmetic, now used by virtually all computers.

For more detailed information on floating-point computer arithmetic, see the excel-
lent book by Overton [102]. In pavticular, a careful reader might note that we seem
to be storing 33 bits of floating-point information in a 32 bit word, and the trick
that enables us to avoid storing the leading bit in the mantissa is explained in that
boock.

is bounded by €,,, /2. Note that €, is much larger than the smallest positive number
that the machine can store exactly!

The next two challenges provide some practice with floating point number
systems, first in base 10 and then in base 2.

CHALLENGE 1.2. Assume you have a base 10 computer that stores floating
point numbers using & 5 digit normalized mantissa (x.xxxx), a 4 digit exponent,
and a sign for each.

(a) For this machine, what is machine epsilon?

{b) What is the smallest positive number that can be represented exactly in this
machine?

CHALLENGE 1.3. Assume you have a base 2 computer that stores float-
ing point numbers using a 6 digit (bit) normalized mantissa (x.xxxxx), a 4 digit
exponent, and a sign for each.

1.3. Computer Arithmetic 11

POINTER 1.5. Internal Representation vs. Printed Numbers.

In interpreting MATLAB results, retnember that if a number @ is displayed as 1.0000,
it is not necessarily equal to 1. All you know is that if you round the number to
the nearest decimal number with § significant digits, you get 1. I you want to sce
whether it equals 1 exactly, then display = — 1. Alternatively, typing format hex
changes the display to the internal machine representation.

{a) For this machine, what is machine epsilon?
(b) What is the smallest posifive number that can be represented exactly in this
machine?

(¢) What mantissa and exponent are stored for the value 1/107 Hint:

3———1—+~1—+1+1+ L + 1+
10 16 32 256 512 4096 @ 8192 7

We’ll experiment a bit with the oddities of floating-point arithmetic.

CHALLENGE 1.4.

{a) Consider the following code fragment:
x =1;
delta = 1 / 2~ (53};
for j=1:2" (20),
X = x + delta;
end
Using mathematical reasoning, we expect the final value of x to be 1 4+ 2733,
Use your knowledge of floating-point arithmetic to predict what it actually is. Verify
by running the code. Explain the result. '

(b) Using mathematical reasoning, we know that for any positive number x, 22 is
a number greater than x. Is this true of floating point numbers? Run this code
fragment and explain your result:
x=1;
twox = 2%x;
while (twox > x)
X = twox;
twox = 2%x;
end

12 Chapter 1. Errors and Arithmetic

{(c) Using mathematical reasoning, we know that addition and multiplication are
commutative
rH+y=y+r Y=y

and associative
(t+y)+2)=z+(y+2), (@Fyz=a(yz)
and that multiplication distributes over addition:
2(y + z) = zy + 2.

Give examples of floating point numbers x, y, and z for which addition is not
associative. Find a similar example for multiplication, and a third example showing
that floating point multiplication does not always distribute over addition. (Avoid
expressions that evaluate to - Inf or NaN, even though examples can be constructed
using these values.)

(d) Write a MATLAB expression that gives an answer of NalN and one that gives
~Inf.

(e) Given a floating point number x, what is the distance between x and the next
larger floating point number? (Answer this either by analyzing the machine repre-
sentation scheme or by experimenting in MATLAB.) Approximate your ahswer as a
multiple of ¢,,.

Our experiments have shown us that

¢ Unlike the fixed-point numbers, the numbers that we can store in floating
point representation are not equally spaced.

¢+ When we do a floating point operation (addition, subtraction, multiplication,
or division), we get either exactly the right answer, or a rounded version of
it, or NaN, or an indication of overflow.

¢ The main advantage of floating-point representation is the wide range of values
that can be approximated with it.

Because of the errors introduced in floating point computation, small changes
in the way the data is stored can make large changes in the answer, as we see in
the next challenge.

CHALLENGE 1.5. Suppose we solve the linear system

[200 100] [1007
Aw= [1.99 1.00] v [~1.00 } =0

1.4. How Errors Propagate 13

Now suppose that the units for #{1} are centimeters, while the units for H(2) are
meters. If we convert the problem to meters we obtain the linear system

fo02 oo [oo01]
Cz= [1.99 1.00 } #= [~1.00] =d

Solve both systems in MATLAB using the backslash operator and explain why @ is
not exactly equal to z.

If all data were exact and if computers did their arithmetic using real numbers,
then mathematical analysis would tell us all we need to know. Because of uncer-
tainty in data and use of the floating-point number system, we need to understand
how errors propagate through computation.

1.4 How Errors Propagate

If answers to our calculations were always represented as the floating-point num-
ber closest to the true answer, then designing accurate algorithms would be easy.
Unfortunately, the computed answer tends to drift awsy from the true answer due
to accumulation of rounding error. This happens whenever the number of digits
is Iimited, so for convenience, we'll look at examples in decimal arithmetic rather
than binary.

Suppose we have measured two values:

a = 2.003 £ 0.001,
b = 2.000 4 0.001.

The absolute error in each measurement is bounded by 0.001, and the relative error
in the second is at most .001/1.999 =~ 0.05%. The relative error in the first is also
about 0.05%.

‘What can we conclude about the difference between the two values? The true
difference is at most 2.004 — 1.999 = .005 and at least 2.002 — 2.001 = .001. We
obtain the same information by taking the difference between the measurements
and adding the uncertainties: @ — b = 0.003 = 0.002.

When we subtracted the numbers, our bounds on the absolute errors were
added. What happened to our bound on the relative error? If the true answer is
0.001, the relative error would be {0.003 — 0.001)/0.001 = 200%. This enormous
magnification of the relative error bound resulted from catastrophic cancellation
of the significant digits in the two measurements: although the measured values have
4 significant digits, the difference has only 1. Any subsequent computation involving
this difference propagates the error.

We could generalize this example to prove a theorem: when adding or sub-
tracting, the bounds on absolute error add.

What about multiplication and division?

14 Chapter 1. Errors and Arithmetic

CHALLENGE 1.6. Suppose @ and y are true (nonzere) values and & and § arce
our approximations to them. Let’s express the errors as

{a) Show that the relative error in & is || and the relative ervor in § is |sl.
{(b) Show that we cant bound the relative error in &§ as an approximation to 2y by

Ef — Ty

< fr] + |s|+lrs).
<l el s

Since we expect the relative errors » and s to be much less than 1, the quan-
tity |rs| is expected to be very small compared to |r| and |s|. Therefore, when
multiplying or dividing, the bounds on relative errors (approximately) add.

Notice that these statements about errors after arithmetic operations assume
that the computed solution is stored exactly; additional error may result from round-
ing to the nearest floating-point number. \

CHALLENGE 1.7. Consider the following MATELAB code:

x = .1;
sum = 0Q;
for i=1:100
sum = sum + X;
end

Is the final value of sum equal to 107 If not, why not?

In computations where error build-up can occur, it is good to rearrange the
computation to avoid cancellation whenever possible. We'll consider a familiar
example, finding the roots of a quadratic polynomial, next.

1.5 Mini Case Study: Avoiding Catastrophic
Cancellation

Suppose we are asked to find the roots of the polynomial
z® — 56z + 1 =0.

1.5. Mini Case Study: Aveiding Catastrophic Canceilation 15

The usual formula, which you may have learned in an algebra class, computes

Z1 284+ V783 =~ 28427982 = 55.982 {(40.0005),
Tz = 28-—-+/783 =~ 28-27982 = 0.018 (£0.0005}.

The error arose from approximating /783 by its correctly rounded value, 27.982.
The absolute error bounds are the same, but the relative error bounds are about
105 for z; and 0.02 for 23 — vastly different!

The problem, of course, was catastrophic cancellation in the computation of
T3, and it is easy to convince yourself that for any quadratic with real roots, the
quadratic formula causes some cancellation during the computation of one of the

roots. '
We can avoid this cancellation by using other facts about quadratic equations

and about square roots. We consider three possibilities.

o Use an alternate formula. The product of the two roots equals the constant
term in the polynomial, so #;x2 = 1. If we compute

If

g = —,
Ty

then our relative error is bounded by 1075, the relative error in our value for

Z1, S0 we obtain
xp ~ .0178629(+2 x 1077),

accurate to the same relative error.
o Rewrite the formula. Notice that
z2 = 28 — V783 = /784 — /783
Let’s derive a better formula for the difference of these square roots:

- Vite+z

z4+e—=z

"Gt v
= ViTer Ve

Therefore, letting z = 783 and e = 1, we calculate
.
2T 28 +/783

giving the same result as above but from a different approach.

» Use Taylor series. Let f(z) = +/Z. Then
e+ = f(2) = f'RJe+ 37" (2) + -,

so we can approximate the difference by f/(z)e = 1/(24/783).

i6 Chapter 1. Errors and Arithmetic

POINTER 1.6. Symbolic Computation.

Some folks clalm that the pitfalls in Hoating-point arithmetic are best avoided by
avoiding floating-point arithmetic altogether, and instead using symbolic compu-
tation systems such as MAPLE (http://www.maplesoft.com) (included in MAT-
LAB) or MATHEMATICA (wuw.wolfram.com). These systems are incredibly useful,
but eventually they produce a formula that needs to be evaluated using arithmetic.
These systems have pitfalls of their own: the computation can use a tremendous
amount of time and storage, and they can produce formulas that lead to unneces-
sarily high relative and absolute errors.

CHALLENGE 1.8. Write a MATLAB function that computes the two roots of
a quadratic polynomial with good relative precision.

1.6 How Errors Are Measured

Error analysis determines the cumulative effects of error. We have been using
forward error analysis, but there are alternatives, including backward error analysis.

¢ In forward error analysis, we find an estimate for the answer and bounds
on the error. Schematically, we see in the top of Figure 1.2 that we have a
space of all possible problems and a space of their solutions. We are given a
true problem whose true solution is unknown. We compute a solution, and
report that solution along with a bound on the distance between the computed
solution and the true solution. For example, we might compute the answer
5.348 and determine that the true answer is 5.348 4 .001. On, for a vector
solution, we might report that [|@; — @sruell < 1075, where x, is the computed
solution and .. is the true solution.

¢ In backward error analysis, we again are given a true problem whose true
solution is unknown. We compute a solution, and report that solution along
with a bound on the difference between the problem we solved and the true
problem. This is illustrated in the bottom of Figure 1.2.

Let’s determine forward and backward error bounds for a simple problem.

CHALLENGE 1.9. Suppose the sides of a rectangle have lengths 3.2 £ .005 and
4.5 £ .005. Consider approximating the area of the rectangle by A = 14.

Forward Error Analysis: 1
Report the computed solution and a region known to

contain both the true and computed solutions.

Problem space Solution space

True solution

Computed (unknown)

solution

. Region guaranteed
to contain both solutions.

Backward Error Analysis:
Report the computed solution and a region known to
contain both the given and solved problems.

Problem space Solution space

=

True solution
{unknown)

4 solution

Region guaranteed -
to contain both problems.

Figure 1.2. In forward error analysis, we find bounds on the distance
between the computed solution and the true solution. In backward error analysis,
we find bounds on the distance between the problem we solved and the problem we
wanted to solve.

18 Chapter 1. Errors and Arithmetic

{a} Give a forward crror bound for A as an approximation to the true area.

(b) Give a backward error bound.

It might be hard to imagine a situation in which backward error analysis
provides any useful information, but think back to our bridge. Suppose we compute
a solution to a problem for which the measurements differ from our measurements
by 1075, If the error bounds in our measurements are greater than 1075, then we
may have computed the stresses for the true bridge! In any case, the solution we
computed is as reasonable as one for any other problem in the uncertainty intervals,
80 we can be quite satisfied with the outcome. In general, backward error statements
are quite useful when the data has uncertainty.

Backward error estimates also tend to be less pessimistic than forward error
estimates, since they don’t involve taking a worst-case bound after every computa-
tion. Backward error estimates are usually derived at the end of the algorithm. For
example, if we compute an approximate solution 2, to a linear system of equations

Az=0>
then we can test how good it is by evaluating the residual
r=b— Azx,.

If x. equals the true solution, then r = 0; if it is a good approximation, then we
expect r =~ 0. In any case, we know that our computed solution x, is the exact
solution to the nearby problem

Az, =b—r,

50 ||| gives us a backward error bound.
Here are three examples to provide some experience in computing error bounds.

CHALLENGE 1.10. Bound the backward error in approximating the solution

to
2 1) [w]_[5204], 1
36 || a0 | 21357] Y TT | 3|

CHALLENGE 1.11. Suppose that you have measured the length of the side of
a cube as {3.00 & .005) meters. Give an estimate of the volume of the cube and a
(good) bound on the absolute error in your estimate.

1.7. Conditioning and Stability 19

1.7 Conditioning and Stability

It is important to distinguish between bad problems and bad algorithms.

We say that a problem is well-conditioned if small changes in the data always
make small changes in the solution; otherwise it is ill-conditioned. Similarly, an
algorithm is stable if it always produces the solution to a nearby problem, and

unstable otherwise.
To illustrate these ideas, consider the linear system of equations

RIEEH

where § < e, /2. If we solve this system using Gauss elimination without pivoting,

we compute
o el] 1]

zo=1, 1 =0.

S0

The true solution is .
Tirue — [116])

1-8

so our answer is very bad. The problem is well-conditioned, though; we can see
this graphically in Figure 1.3, since small changes in any of the coefficients of the
two lines move the intersection point by just a little, Therefore, Gauss elimination
without pivoting must be an unstable algorithm. If we use pivoting, our answer
improves: the linear system is rewritten as

ozl

so the elimination gives us

from which we determine that
To = 1, xy =-—1.

This is quite close to the true solution.
Consider a second example with 3-digit decimal arithmetic:

0.661 0.991 zy | | 0.330 (1.1)
0.500 0.750 z2 | | 0.250)

1 Actually, for historical reasons, well-conditioned problems are sometimes called stable in some
areas of scientific computing, but it is best to use the term well-conditioned to avoid confusion.

20 Chapter 1. Errors and Arithmetic

T T T

Equations for Linear System 1
2 ¥ T T T T T

0.8

08

04

0.2

Figure 1.3. Plot of o well-conditioned system of linear equations. Small
changes in the data move the intersection of the two lines by a small amount.

Equations for Linear Systern 2

1.8 T T T T T T T T T

0z 1 L 1 1 L L L
-2 -1.8 -1.6 -t4 -1.2 -1 -0.8 -0.8 -0.4 -0.2 o

Figure 1.4. Plot of an ill-conditioned system of linear equations. Small
changes in the data can move the intersection of the two lines by a large amount.
This is the example in (1.1) except that the (1,1) coefficient in the matriz has been
changed from 0.661 to 0.630 so that the two lines could be distinguished visually.

1.7. Conditioning and Stability 21

If we compute the solution with pivoting, truncating all intermediate results to 3

digits, we obtain
o — —.470
cT 647 |7

whereas the true solution is quite far from this;

_ [=1.000
Btrue =1 1000 |-

But when we plug our computed solution back into (1.1), we see that the residual,
or difference between the left and right sides, is

[—.000507
= | —.000250 | -

Gauss elimination with pivoting produced a small residual because it is a stable
algorithm, so it is guaranteed to solve a nearby problem. But the z-error is not
small, since the problem is ill-conditioned. We can see this graphically, in Figure
1.4; if we wiggle the coefficients of the two lines, we can make the intersection move
quite a bit. '

Sometimes we have additional information about the solution to a problem
that gives us some guidance about improving a computed solution, as in the next
challenge.

CHALLENGE 1.12. Suppose you solve the nonlinear equation f(z} = 0 using
a MATLAB routine, and the answers are complex numbers with small imaginary
parts. If you know that the true answers are real numbers, what would you do?

Life may toss us some ill-conditioned problems, but there is no good reason

to settle for an unstable algorithm.
In the next chapter we illustrate various ways of measuring the sensitivity or

conditioning of a problem.

