
1 The Linear Least Squares Problem

Introduction: Determine unknown parameters c1, . . . ,cn using m > n measurements with errors

Example: We want to measure the acceleration g caused by gravity. If we throw an object into the air the height y is a

quadratic function of time

y = g(t) = c1 + c2t + c3t2

with three unknown parameters c1,c2,c3 which we want to determine (then we obtain the acceleration from gravity as

g =−2c3). In order to determine 3 unknown parameters we need at least 3 measurements. But we have measurement errors,

so we want to perform a much larger number m of measurements.

We now perform our experiment: we throw an object into the air and measure its height at m different times t1, . . . , tm: We

perform m = 4 measurements and find the following data values (time t in seconds, height y in meters):

t j 0 1 2 3

y j 5 15 20 10

0 0.5 1 1.5 2 2.5 3

time

0

5

10

15

20

measured heights with best fit g(t)

Note that there is no quadratic function g(t) which passes through all four points. We therefore want to find the function

g(t) = c1 + c2t + c3t2 which gives “the best fit” for the given data points.

In general the output value y depends on the input value x as follows:

y = g(t) with g(t) = c1g1(t)+ · · ·+ cngn(t)

Here the functions g1(t), . . . ,gn(t) are known, and we want to determine the unknown parameters c1, . . . ,cn.

We perform m ≥ n measurements and obtain data points (t1,y1), . . .(tm,ym) where

y j = g(t j)+ e j, j = 1, . . . ,m

with measurement errors e j. We assume that e1, . . . ,em are small random errors (we will be more precise below).

Example: If we want to fit measured points with a straight line, we have g(x) = c1 ·1+ c2 · t with g1(x) = 1 and g2(x) = t.

In this case we need m ≥ 2 points in order to be able to estimate c1,c2. Because of the random errors we should use m as

large as possible. Note that for m > 2 points we will not be able (in general) to find a straight line which passes through all

the data points. We would like to find c1, . . . ,cn which give the “best fit”.

For a certain choice c1, . . . ,cn of the parameters we can measure the fit to the data values by the residual vector r =
(r1, . . . ,rm)

⊤ where

r j := g(t j)− y j = c1g1(t j)+ · · ·+ cngn(t j)− y j, j = 1, . . . ,m.

If the function g(t) were the true function, the observed values y1, . . . ,ym would have errors r1, . . . ,rm. Since large values of

the errors are unlikely we want to pick c1, . . . ,cn such that the residual vector r has a “small size”.





“Least squares method”

We want to find coefficients c1, . . . ,cn such that the 2-norm‖r‖2 is minimal, i.e.,

F(c1, . . . ,cn) := r2
1 + · · ·+ r2

m = minimal. (1)

Define the matrix A ∈ R
m×n by

A =






g1(t1) · · · gn(t1)
...

...

g1(tm) · · · gn(tm)






then the residual vector is given by r = Ac− y and F(c1, . . . ,cn) = ‖Ac− y‖2
2.

Therefore we can pose the least squares problem in the following form: Given a matrix A ∈ R
N×n and a right-hand side

vector y ∈ R
m, find a vector c ∈ R

n such that

‖Ac− y‖2 = minimal. (2)

We will write ‖·‖ for ‖·‖2 from now on.

Normal Equations

Note that the function F(c1, . . . ,cn) is a quadratic function of the coefficients c1, . . . ,cn. Since this is a smooth function, at a

minimum we must have that the partial derivatives satisfy

∂F

∂c1

= 0, . . . ,
∂F

∂cn

= 0. (3)

Since F(c1, . . . ,cn) = r2
1 + · · ·+ r2

m and r j = a j1c1 + · · ·+a jncn − y j we obtain using the chain rule

∂F

∂c1

= 2r1
∂ r1

∂c1

+ · · ·+2rm

∂ rm

∂c1

= 2r1a11 + · · ·+2rmam1 = 2[a11 · · ·am1]






r1

...

rm






!
= 0

for the first equation in (3). All n equations in (3) together can therefore be written as





a11 · · · am1

...
...

an1 · · · amn











r1

...

rm




=






0
...

0




 , i.e.,A⊤r =






0
...

0




 .

These are the so-called normal equations. Since r = Ac− y we obtain A⊤(Ac− y) =






0
...

0




 or

A⊤Ac = A⊤y. (4)

This leads to the following algorithm:

1. Let M := A⊤A and b := A⊤y

2. Solve the n×n linear system Mc = b.

In Matlab we can solve the normal equations and plot the resulting curve as follows:

t = [0;1;2;3]; y = [5;15;20;10]; % given data values

A = [t.^0, t, t.^2]; % columns of A contain values of functions 1, t, t^2 for given t-values

M = A’*A; b = A’*y; % matrix and rhs vector for normal equations

c = M\b % solve normal equations, this gives coefficients c for least squares fit

tp = (0:.01:3.1)’; % t-values for plotting as column vector

Ap = [tp.^0, tp, tp.^2]; % values of functions 1, t, t^2 for given tp-values

plot(t,y,’o’,tp,Ap*c] % plot data points and least squares fit



Note that ‖Ac− y‖ = min means that we want to approximate the vector y by a linear combination of the columns of the

matrix A. If a column of A is a linear combination of some other columns, this column is “superfluous”, and leads to multiple

solutions c which all give the same approximation Ac.

Therefore it makes sense to assume that the columns of the matrix A are linearly independent, i.e.,

Ac =






0
...

0




 =⇒ c =






0
...

0




 . (5)

This means that the rank of the matrix A is n (the rank is the number of linearly indpendent columns).

Theorem 1. Assume that the columns of A are linearly independent. Then

1. The normal equations have a unique solution c ∈ R
n.

2. This vector c gives the unique minimum of the least squares problem: For c̃ ∈ R
n with c̃ 6= c we have

‖Ac̃− y‖> ‖Ac− y‖

Proof. For (1.) we have to show that the matrix M = A⊤A is nonsingular, i.e., Mc =






0
...

0




 =⇒ c =






0
...

0




. Therefore we

assume Mc =






0
...

0




. By multiplying with c⊤ from the left we obtain

c⊤A⊤
︸ ︷︷ ︸

(Ac)⊤

Ac = 0, i.e.,‖Ac‖= 0

which means Ac =






0
...

0




. Now our assumption (5) gives c =






0
...

0




.

For (2.) we let c̃ = c+d with d 6=






0
...

0




 and have r̃ := Ac̃− y = A(c+d)− y = (Ac− y)+Ad = r+Ad, hence

‖r̃‖2 = (r+Ad)⊤(r+Ad) = r⊤r+2(Ad)⊤r+(Ad)⊤(Ad)

= ‖r‖2 +2d⊤ A⊤r
︸︷︷︸







0
...

0








+‖Ad‖2

︸ ︷︷ ︸

>0

> ‖r‖2

where A⊤r =






0
...

0




 by the normal equations, and ‖Ad‖> 0 because of d 6=






0
...

0




 and (5).

Solving the least squares problem in machine arithmetic

We are given a matrix A ∈ R
m×n with n linearly independent columns, and a right hand side vector y ∈ R

m. We want to

compute the vector c ∈ R
n which minimizes ‖Ac− y‖2 (the 2-norm of the residual).



Loosely speaking this means that we try to “solve the linear system Ac = y as best as possible”: We cannot find c such that

Ac = y, so the next best thing is to find c with ‖Ac− y‖ as small as possible.

In Matlab we can solve this problem using the normal equations A⊤Ac = A⊤y and use M = A’*A; b = A’*y; c = M\b

There is a Matlab shortcut for this: We can just type c=A\y (as if we were solving the linear system Ac = y).

On a computer with machine arithmetic it turns out that solving the normal equations can be a numerically unstable

algorithm. We can illustrate this by looking at the special case m = n with a square nonsingular matrix A. In this case

‖r‖= ‖Ac− y‖ is minimized by solving the linear system Ac = y, and we have ‖r‖= 0. Assume that A has a large condition

number of about 103, then typically A⊤A has a condition number of about 106. Therefore by solving the normal equations

with matrix M = A⊤A we will lose about 6 digits of accuracy. On the other hand we can just solve Ac = y and only lose about

3 digits of accuracy. Hence in this special case the algorithm with the normal equations is numerically unstable. It turns out

that a similar loss of accuracy can also happen for m > n if we use the normal equations.

There is an alternative algorithm for solving the linear least squares problem which is called “QR decomposition”.

When you use the shortcut command c=A\y Matlab actually uses the QR decomposition to compute the vector c. This will

give less roundoff error, compared to using M = A’*A; b = A’*y; c = M\b .


