
1 Piecewise Cubic Interpolation

Typically the problem with piecewise linear interpolation is the interpolant is not differen-
tiable as the interpolation points (it has a kinks at every interpolation point). A commonly
used approach to obtain a smoother interpolation, is to instead replace the linear functions
with cubic ones. This means that we will have an interpolation function of the form

s(x) =


s0(x) if x0 ≤ x < x1

s1(x) if x1 ≤ x < x2

...
...

sn−1(x) if xn−1 ≤ x ≤ xn

, (1)

where si(x) is a cubic polynomial of the form

si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3. (2)

Since there are n polynomial functions with 4 coefficients each, we have 4n unknowns to
solve for. To satisfy the interpolation condition s(xi) = yi requires that

si(xi) = yi, i = 0, . . . , n− 1, and sn−1(xn) = yn (3)

Note that since si(xi) = ai, the first n conditions above immediately imply that ai = yi for
i = 0, . . . n− 1. Additionally we will impose that s(x) is twice continuously differentiable at
the points x1, . . . , xn−1. This means

si−1(xi) = si(xi) = yi, i = 1, . . . , n− 1

s′i−1(xi) = s′i(xi), i = 1, . . . , n− 1

s′′i−1(xi) = s′′i (xi), i = 1, . . . , n− 1.

(4)

The conditions (3) and (4) are the fundamental conditions that define a cubic spline. Note
that in addition to si(xi) = ai we also have s′i(xi) = bi and s′′i(xi) = 2ci. If we count up all
the constraints, we see that the interpolation condition (3) imposes n + 1 constraints, while
twice continuous differentiability (4) imposes 3(n− 1) constraints. This amounts to

4n− 2 = (n + 1) + 3(n− 1)

total constraints, which is obviously 2 less than the 4n coefficients to be determined. Typi-
cally this is corrected by imposing two conditions at the end points of the interval. Some of
the most common examples are the following

1. Natural Spline: s′′0(x1) = s′′n−1(xn) = 0
This choice produces a spline with the natural property that it minimizes the total
curvature of the the approximating spline (this will be discussed in more detail later).
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2. Clamped Spline: s′0(x0) = y′0 and s′n−1(xn) = y′n
Here y′0 and y′n are either approximations of the derivatives of the function at that
point or arbitrarily chosen to pin the slopes at a particular angle.

3. Not-a-Knot Spline: s′′′0 (x1) = s′′′1 (x1) and s′′′n−2(xn−1) = s′′′n−1(xn−1)

Of course, in order to determine the value of s(x) for any one of these choices, one must
solve a complicated linear system for the coefficients ai, bi, ci, di, for i = 0, . . . , n − 1. As it
turns out, such a linear system can be written as a tridiagonal linear system and therefore
solved in O(n) floating point operations.

Example: Lets consider an example. Suppose we want to find the natural cubic spline
that interpolates the points (0, 1), (1/2,−1) and (1, 2). The spline take the form

s(x) =

{
s0(x) if 0 ≤ x ≤ 1/2

s1(x) if 1/2 ≤ x ≤ 1,
(5)

where
s0(x) = a0 + b0x + c0x

2 + d0x
3

and
s1(x) = a1 + b0(x− 1/2) + c0(x− 1/2)2 + d0(x− 1/2)3

From the interpolation conditions (3) and the continuity condition in (4) we have

s0(0) = 1 : a0 = 1,

s1(1/2) = −1 : a1 = −1,

s1(1/2) = 2 : a1 + 1
2
b1 + 1

4
c1 + 1

8
d1 = 2,

s0(1/2) = −1 : a0 + 1
2
b0 + 1

4
c0 + 1

8
d0 = −1.

Also the derivative conditions from (4) imply that

s′0(1/2) = s′1(1/2) : b0 + c0 + 3
4
d0 = b1,

s′′0(1/2) = s′′1(1/2) : 2c0 + 3d0 = 2c1.

Finally the condition of being a natural spline implies that

s′′0(0) = 0 : c0 = 0

s′′1(0) = 0 : 2c1 + 3d1 = 0.

Now one simply need to solve the above linear system for the coefficients. After doing this,
one obtains

s0(x) = 1− 13

2
x + 10x3

and
s1(x) = −1 + (x− 1/2) + 15(x− 1/2)2 − 10(x− 1/2)3.
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Lets see how this approach works in general. We will assume in what follows that the
interpolation points x0 < x1 < . . . < xn (knots) are equally spaced with h = xi+1 − xi

being the spacing between points. As remarked already, the first n conditions in (3) imply
that ai = yi. We still need to determine the remaining 3n coefficients bi, ci and di for
i = 0, . . . , n− 1. If we include the last condition of (3) with the continuity condition of (4),
then we have

si−1(xi) = yi, i = 1, . . . n.

Using the fact that ai = yi, this can be written as

yi + bih + cih
2 + dih

3 = yi+1, i = 0, . . . n− 1. (6)

When considering the derivative conditions in (4) we may use the fact that s′i(xi) = bi
and s′′i (xi) = 2ci to conclude that the first derivative conditions s′i−1(xi) = s′i(xi), i =
1, . . . , n− 1 can be written as

bi + 2cih + 3dih
2 = bi+1 i = 0, . . . n− 2 (7)

while the second derivative conditions s′′i−1(xi) = s′′i (xi), i = 1, . . . , n− 1 can be written as

ci + 3dih = ci+1 i = 0, . . . n− 2. (8)

If we consider the natural cubic spline condition, then we also have c0 = 1
2
s′′0(x0) = 0 and

cn−1 = 1
2
s′′n−1(xn) = 0. In this case it will make the most sense to attempt to reduce solving

the linear systems (6), (7), (8) to solving for the coefficients ci, i = 1, . . . n− 2, first (This is
because the natural cubic spline condition are on c0 and cn−1. If we were to consider clamped
splines, then it would make more sense to solve for bi first.).

To begin, we solve for di in equation (8)

di =
ci+1 − ci

3h
. (9)

We may also solve for bi in (6), which after using the above expression for di gives

bi = f [xi, xi+1]− cih− dih
2 = f [xi, xi+1]−

2

3
cih−

1

3
ci+1h (10)

where we have used the divided difference notation f [xi, xi+1] = (yi+1 − yi)/h. Finally we
can substitute the expression for bi and the expression for di into equation (7) to obtain

f [xi, xi+1]−
2

3
cih−

1

3
ci+1h + 2cih + (ci+1 − ci)h = f [xi+1, xi+2]−

2

3
ci+1h−

1

3
ci+2h

Rearranging this and collecting terms gives an equation for ci, i = 1, . . . n− 2

1

3
ci +

4

3
ci+1 +

1

3
ci+2 =

f [xi+1, xi+2]− f [xi, xi+1]

h
= f [xi, xi+1, xi+2].
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Finally, using the fact that for the natural spline c0 = 0 and cn−1 = 0 gives the following
linear system

1
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4 1 0 0 · · · 0
1 4 1 0 · · · 0

0 1 4 1
. . .

...
...

. . . . . . . . . . . .
...

0 0 0 1 4 1
0 0 0 0 1 4





c1
c2
...
...

cn−3
cn−2


=



f [x0, x1, x2]
f [x1, x2, x3]

...

...
f [xn−3, xn−2, xn−1]
f [xn−2, xn−1, xn]


(11)

Note that this is a tridiagonal linear system and is strictly diagonally dominant since 4 > 1+1.
Therefore the matrix is positive definite and non-singular and can be solved quickly using
the Thomas algorithm with O(n) flops. Once you solve this system, for ci, i = 1, . . . n − 1
the other coefficients bi and di can be obtained from equations (10) and (9), each costs O(n)
flops.

1.1 Cubic B-Splines

As another approach to the computation of cubic splines, we will find useful follow an
approach similar to piecewise linear interpolation or Lagrange interpolation approach, intro-
ducin a family of basis functions. Our goal is to write the spline as

s(x) =
∑
i

aiBi(x)

where Bi(x) is a certain piecewise cubic spline. The functions Bi(x) are called cubic B-
Splines. Although similar to the formulas for piecewise linear interpolation and Lagrange
interpolation formulas, there is an important difference. The coefficients ai are not necessarily
equal to the function output values yi.

The main benefit of this approach is that the interpolation procedure can be broken into
two pieces. First construct the B-splines Bi(x) and then find the ai’s. The has the benefit
that, since the construction of the B-splines will not in any way depend on the yi data,
meaning, once you have computed the B-spines you do not need to compute them again for
different sets of yi values.

Computing the B-splines

We will assume that each Bi(x) is piecewise cubic function of the following form

Bi(x) =



0 if x ≤ xi−2,

qi−2(x) if xi−2 ≤ xi−1,

qi−1(x) if xi−1 ≤ xi,

qi+1(x) if xi ≤ xi+1,

qi+2(x) if xi+1 ≤ xi+2,

0 if xi+2 ≤ x,
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where qi(x), i = 0, . . . n are the usual cubic polynomials of the form

qi(x) = Ai + Bi(x− xi) + Ci(x− xi)
2 + Di(x− xi)

3.

The functions qi will be determined by the requirement that

Bi(xi−2) = B′i(xi−2) = B′′i (xi−2) = 0 (12)

and
Bi(xi+2) = B′i(xi+2) = B′′i (xi+2) = 0

and that Bi(x) is twice continuously differentiable at xi−1, xi, xi+1. Since we are assuming
the interpolation points are equally spaced, this will imply that Bi(x) is symmetric about
x = xi. Note that the two continuous derivatives and the symmetry automatically imply that
B′i(xi) = 0. Using symmmetry, it follows that we only need to ensure equation (12) holds,that
the two continuous derivatives at xi−1 match and that B′i(xi) = 0. This is accomplished by
requiring the following

qi−2(xi−2) = q′i−2(xi−2) = q′′i−2(xi−2) = 0

qi−2(xi−1) = qi−1(xi−1), q′i−2(xi−1) = q′i−1(xi−1), q′′i−2(xi−1) = q′′i−1(xi−1)

as well as
q′i−1(xi) = 0.

From the conditions at xi−2 we can easily conclude (by integration) that

qi−2 = Di−2(x− xi−2)
3.

Additionally, from the remaining smoothness conditions at xi−1 and the zero derivative
condition at xi one finds that

qi−1(x) = Di−2
(
h3 + 3h2(x− xi−1) + 3h(x− xi−1)

2 − 3(x− xi−1)
3
)

Of course, since we needed to determine 8 coefficients for qi−2 and qi−1 with only 7 constraints,
we have an undetermined constant Di−1. Typically the convention is to take Bi(xi) = 2/3
which sets Di = 1/6h3. Using the symmetry of Bi(x) about x = xi we automatically obtain
qi+1(x) and qi+2(x) by the formulas

qi+1(x) = qi−1(2xi − x), qi+2(x) = qi−2(2xi − x).

After doing this, we find that Bi(x) is completely determined by

qi−2 =
1

6h3
(x− xi−2)

3

qi−1 =
1

6
+

1

2h
(x− xi−1) +

1

2h2
(x− xi−1)

2 − 1

2h3
(x− xi−1)

3

qi+1 =
1

6
− 1

2h
(x− xi+1) +

1

2h2
(x− xi+1)

2 − 1

2h3
(x− xi+1)

3

qi+2 = − 1

6h3
(x− xi+2)

3
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By factoring the polynomials in the above formula, it is possible to show that

Bi(x) = B

(
x− xi

h

)
where

B(x) =


2
3
− x2

(
1− 1

2
|x|
)

if |x| < 1,
1
6
(2− |x|)3 if 1 ≤ |x| ≤ 2,

0 if 2 ≤ |x|.

Finding the coefficients

Now we write our spline as

s(x) =
n+1∑
i=−1

aiBi(x)

Note that we have taken the sum over i = −1, . . . , n + 1 even though we do not have points
x−3, x−2, x−1, xn+1, xn+2, xn+3. This is because we want to sum over all Bi which are non-zero
on the interval [x0, xn]. When a piece of Bi(x) lies outside of the interval [x0, xn], we simply
ignore that piece. Any piece of Bi(x) that lies inside [x0, xn] will, by the piecewise polynomial
nature of Bi(x), necessarily only depend on the points xi that belong to x0, . . . , xn.

The task of determining the coefficients ai is now simple once you realize that at any
point xi only Bi−1(xi), Bi(xi) and Bi+1(xi) are non-zero (i.e. they are the only functions
‘turned on’ at xi). Using the fact that for each i = 1, . . . n− 1 we have the exact values

Bi(xi−1) =
1

6
, Bi(xi) =

2

3
, Bi(xi+1) =

1

6

We see that

s(xi) =
1

6
(ai−1 + 4ai + ai+1)

and therefore, the interpolation requirement s(xi) = yi for i = 0, . . . n implies that

ai−1 + 4ai + ai+1 = 6yi for i = 1, 2, . . . , n.

In order to solve for ai we need to know the values of a−1 and an+1. Again, this is where
the additional endpoint conditions are used. It is not difficult to show that for the natural
spline, we have

s′′(xi) = ai−1B
′′
i (xi) + aiB

′′
i (xi) + ai−1B

′′
i+1(xi) =

1

h2
(ai−1 − 2ai + ai+1).

Solving the natural spline conditions s′′(x0) = 0 and s′′(xn) = 0 using the above formula give

a−1 = 2a0 − a1, an+1 = 2an − an−1.
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This means when i = 0, we get a0 = y0 and when i = n, we get an = yn. Now the remaining
linear system for ai, i = 1, . . . , n− 1 can be solved by a tridiagonal system

4 1 0 0 · · · 0
1 4 1 0 · · · 0

0 1 4 1
. . .

...
...

. . . . . . . . . . . .
...

0 0 0 1 4 1
0 0 0 0 1 4





a1
a2
...
...

an−2
an−1


=



6y1 − y0
6y2

...

...
6yn−2

6yn−1 − yn


.

Again we find that the remaining coefficients can be computed by inverting a tridiagonal,
positive definite system. The main difference between this system and the tridiagonal system
obtained (11) lies in the right-hand side. In (11) the right-hand side involves computing
n−2 2nd order divided differences, while the right-hand side of the above linear system only
involves the values yi, i = 0, . . . , n. In some sense we have already done this computation in
computing the B-splines Bi(x).
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