1 Piecewise Cubic Interpolation

Typically the problem with piecewise linear interpolation is the interpolant is not differen-
tiable as the interpolation points (it has a kinks at every interpolation point). A commonly
used approach to obtain a smoother interpolation, is to instead replace the linear functions
with cubic ones. This means that we will have an interpolation function of the form

So() ifrg <ax<x

s1(z) ifo <ax<ay

sn-1(r) iz, <z <w,
where s;(z) is a cubic polynomial of the form
si(x) = a; + bi(x — ;) + ci(w — 23)* + di(x — ;). (2)

Since there are n polynomial functions with 4 coefficients each, we have 4n unknowns to
solve for. To satisfy the interpolation condition s(z;) = y; requires that

si(z;)=vy;, 1=0,...,n—1, and s,_1(x,) =y, (3)

Note that since s;(x;) = a;, the first n conditions above immediately imply that a; = y; for
i =0,...n—1. Additionally we will impose that s(z) is twice continuously differentiable at
the points z1,...,z,_1. This means

Si—l(mi) = SZ("L‘Z) =Y 1= ]-7 s 1
si_(x)=sl(x;), i=1,...,n—1 (4)
! (.Tl), z:l,,n—l

The conditions (3) and (4) are the fundamental conditions that define a cubic spline. Note
that in addition to s;(z;) = a; we also have s}(z;) = b; and s'1;(x;) = 2¢;. If we count up all
the constraints, we see that the interpolation condition (3) imposes n + 1 constraints, while
twice continuous differentiability (4) imposes 3(n — 1) constraints. This amounts to

in—2=(n+1)+3(n—1)

total constraints, which is obviously 2 less than the 4n coefficients to be determined. Typi-
cally this is corrected by imposing two conditions at the end points of the interval. Some of
the most common examples are the following

1. Natural Spline: sj(z) =s!_,(x,) =0
This choice produces a spline with the natural property that it minimizes the total
curvature of the the approximating spline (this will be discussed in more detail later).



2. Clamped Spline: s,(z¢) =y, and s,,_,(x,) = v,
Here y;, and g/, are either approximations of the derivatives of the function at that
point or arbitrarily chosen to pin the slopes at a particular angle.

3. Not-a-Knot Spline: s{'(z1) = s{'(z1) and s 5(vp-1) = s/ (Tp_1)

Of course, in order to determine the value of s(z) for any one of these choices, one must
solve a complicated linear system for the coefficients a;, b;, ¢;, d;, for i = 0,...,n — 1. As it
turns out, such a linear system can be written as a tridiagonal linear system and therefore
solved in O(n) floating point operations.

Example: Lets consider an example. Suppose we want to find the natural cubic spline
that interpolates the points (0, 1), (1/2,—1) and (1,2). The spline take the form

~so(x) if 0<2<1)/2
S@)_{sl(g;) if 1/2<z<1, (5)

where
so(x) = ag + box + cox® + do®

and
s1(7) = ay + bo(x — 1/2) + co(x — 1/2) + do(x — 1/2)*

From the interpolation conditions (3) and the continuity condition in (4) we have

s0(0) =1 ap =1,
s1(1/2) = —1: a; = —1,

s1(1/2) =2 a1+%b1+icl+%d1:2,
so(1/2) = —1: ao—l—%bo—i—ic(ﬁ—%do:—l.

Also the derivative conditions from (4) imply that

s0(1/2) = 51(1/2) : bo + co + 3do = bn,
so(1/2) = s (1/2) : 2c0 4 3dy = 2¢;.

Finally the condition of being a natural spline implies that
Sg(()) =0: Cyo — 0
0: 261 + 3d1 =0.

Now one simply need to solve the above linear system for the coefficients. After doing this,
one obtains

13
so(x) =1— 57 + 1023

and
si(z) = =14 (z —1/2) + 15(x — 1/2)* — 10(z — 1/2)°.
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Lets see how this approach works in general. We will assume in what follows that the
interpolation points xy < ;1 < ... < z, (knots) are equally spaced with h = x;11 — z;
being the spacing between points. As remarked already, the first n conditions in (3) imply
that a; = y;. We still need to determine the remaining 3n coefficients b;,¢; and d; for
i=0,...,n—1. If we include the last condition of (3) with the continuity condition of (4),
then we have

Si—l(mi):yia z:l,n

Using the fact that a; = y;, this can be written as
yz+bzh—|—czh2—|—dlh3:yz+1, Z:O,n—l (6)

When considering the derivative conditions in (4) we may use the fact that si(x;) = b;
and s7(z;) = 2¢; to conclude that the first derivative conditions s, _;(x;) = si(x;), i =
1,...,n—1 can be written as

while the second derivative conditions s/ ;(z;) = s/(x;), i=1,...,n—1 can be written as
Cz‘i‘?)dzh:CH_l ZZO,TL—Q (8)

If we consider the natural cubic spline condition, then we also have ¢y = 1s{(z9) = 0 and
Cn1 = 38n_1(x,) = 0. In this case it will make the most sense to attempt to reduce solving
the linear systems (6), (7), (8) to solving for the coefficients ¢;, i = 1,...n — 2, first (This is
because the natural cubic spline condition are on ¢y and ¢,,_;. If we were to consider clamped
splines, then it would make more sense to solve for b; first.).

To begin, we solve for d; in equation (8)

Cit1 — G
dy = 42
a7 (9)

We may also solve for b; in (6), which after using the above expression for d; gives

2 1
bi = flzi, vipa] — cih — dih® = flzi, via] — gcih — gCiHh (10)
where we have used the divided difference notation f[x;, x;11] = (yi1 — yi)/h. Finally we

can substitute the expression for b; and the expression for d; into equation (7) to obtain

2 1 2 1
f[x’ia $i+1] - gcih - gCiHh + 2¢;h + (Ci+1 - Ci)h = f[l’iﬂa xz’+2] - §Ci+1h - gci+2h

Rearranging this and collecting terms gives an equation for ¢;, i =1,...n — 2

1 4 1 LTit+1, Ti+2] — J|Ti, Ti
gCi + gcz‘+1 + gcz‘+2 = flzin +2]h il +1 = fl@i, Tig1, Tigal.




Finally, using the fact that for the natural spline ¢g = 0 and ¢,_; = 0 gives the following
linear system

4 1 0 0 -+ 0][ ¢ ] [ flro,x1, 2] ]
1 4 1 0 - 0 (&) f[afl,fﬂg,l'g]
110 1 4 1 : : :
- = 11
0 0 0 1 4 1 Cpn—3 f[In_g, Tp—2, xn—l}
0 0 0 0 1 4] [chal | flrn—2, w01, 0]

Note that this is a tridiagonal linear system and is strictly diagonally dominant since 4 > 1+1.
Therefore the matrix is positive definite and non-singular and can be solved quickly using
the Thomas algorithm with O(n) flops. Once you solve this system, for ¢;, i = 1,...n — 1
the other coefficients b; and d; can be obtained from equations (10) and (9), each costs O(n)
flops.

1.1 Cubic B-Splines

As another approach to the computation of cubic splines, we will find useful follow an
approach similar to piecewise linear interpolation or Lagrange interpolation approach, intro-
ducin a family of basis functions. Our goal is to write the spline as

s(z) = Z a; B;(x)
7
where B;(z) is a certain piecewise cubic spline. The functions B;(x) are called cubic B-
Splines. Although similar to the formulas for piecewise linear interpolation and Lagrange
interpolation formulas, there is an important difference. The coefficients a; are not necessarily
equal to the function output values y;.

The main benefit of this approach is that the interpolation procedure can be broken into
two pieces. First construct the B-splines B;(x) and then find the a;’s. The has the benefit
that, since the construction of the B-splines will not in any way depend on the y; data,
meaning, once you have computed the B-spines you do not need to compute them again for
different sets of y; values.

Computing the B-splines

We will assume that each B;(x) is piecewise cubic function of the following form

0 if v < wz;_o,
Gi—2(z) if 29 < 344,
Bi(x) = ¢ Gi-1() ?f zi1 <y,
Giv1(z) if vy <,
Giv2(r) if Ty < @i,
0 if ;40 < x,



where ¢;(x), i = 0,...n are the usual cubic polynomials of the form
gi(7) = A; + Bi(x — ;) + Ci(r — 2;)* + Di(z — x;)°.

The functions ¢; will be determined by the requirement that

Bi(wi-2) = Bi(zi-2) = B (j-2) = 0 (12)
and

Bi(wiy2) = Bi(®i+2) = B (2i42) = 0
and that B;(z) is twice continuously differentiable at z; 1, x;, x;11. Since we are assuming
the interpolation points are equally spaced, this will imply that B;(x) is symmetric about
x = x;. Note that the two continuous derivatives and the symmetry automatically imply that
Bl(z;) = 0. Using symmmetry, it follows that we only need to ensure equation (12) holds,that
the two continuous derivatives at x;_; match and that B}(z;) = 0. This is accomplished by
requiring the following

Qi72($i72) = qz/‘—z(wi—z) = q;',_2<xif2) =0
Gi—2(Tim1) = Gim1(@im1),  Go(®ic1) = Gy (Tim1), @i o(@im1) = qi_1(2io1)

as well as
¢i—y(z;) = 0.
From the conditions at x;_5 we can easily conclude (by integration) that
Gi—2 = Dia(x — %—2)3-

Additionally, from the remaining smoothness conditions at x;_; and the zero derivative
condition at z; one finds that

gi-1(x) = Di—y (h* 4+ 3h*(x — 2;-1) + 3h(z — 2-1)* — 3(x — z;21)°)

Of course, since we needed to determine 8 coefficients for ¢;_s and ¢;_; with only 7 constraints,
we have an undetermined constant D;_;. Typically the convention is to take B;(z;) = 2/3
which sets D; = 1/6h3. Using the symmetry of B;(x) about x = x; we automatically obtain
¢i1(x) and g;1o(z) by the formulas

Giy1(7) = 122 — ), Gira(T) = G227 — 7).
After doing this, we find that B;(z) is completely determined by

qi—2 %(f xz‘—2)3

Gi—1 é + %(m — 1) + 2—}112(517 Ti1)” — 2—23(1’ Ti1)
Gi+1 = é - %(f — Tip1) + 2%@ — Tit1) 2—23(1’ — Tip1)°
Qi+2 #(m — Tit2)



By factoring the polynomials in the above formula, it is possible to show that

Bi(z) =B (x ;L”“")

where
222 (1—14a]) if[z| <1,
B(z) = ¢ £(2 — |z|)? if 1 < |z <2,
0 if 2 < |z|.

Finding the coefficients

Now we write our spline as
n+1

s(x) = Z a; B;(z)
i=—1

Note that we have taken the sum over : = —1,... n + 1 even though we do not have points
X_3,T_9,T_1,Tni1, Tni2, Tnrs. Lhisis because we want to sum over all B; which are non-zero
on the interval [zg, x,]. When a piece of B;(x) lies outside of the interval [zg, z,], we simply
ignore that piece. Any piece of B;(z) that lies inside [z, ;] will, by the piecewise polynomial
nature of B;(z), necessarily only depend on the points z; that belong to xo, ..., z,.

The task of determining the coefficients a; is now simple once you realize that at any
point x; only B; 1(z;), Bi(z;) and B;i1(z;) are non-zero (i.e. they are the only functions

‘turned on’ at x;). Using the fact that for each i = 1,...n — 1 we have the exact values
1 2 1
Bi(wia) == Bi(z:) ==, Bi(ri) ==
()=g Ble)=3, Bilen)=g
We see that

1
s(x;) = A (@i—1 +4a; + a;1)
and therefore, the interpolation requirement s(z;) = y; for i = 0,...n implies that

a;_1+4a; +a;.1 =6y; for i=1,2,... n.

In order to solve for a; we need to know the values of a_; and a, ;. Again, this is where
the additional endpoint conditions are used. It is not difficult to show that for the natural
spline, we have

1
s"(x;) = a;i—1B] (x;) + a; B} (x;) + a;-1 By, (%) = ﬁ(@i—l —2a; + aiy1).

Solving the natural spline conditions s”(x¢) = 0 and s”(x,,) = 0 using the above formula give

a_1 = 2aO —ar, Apy1 — 20, — Qp1.



This means when ¢ = 0, we get ap = yo and when ¢ = n, we get a,, = y,. Now the remaining

linear system for a;, = 1,...,n — 1 can be solved by a tridiagonal system
4 1 0 0O -+ 017 aj i [ 6y1—y0 i
1 4 1 0 - 0 (05} 6y2
0 1 4 1 : : B :
0O 0 0 1 4 1] |ap-s 0Yn—2
o 0 0 0 1 4] |lan-1] | 6Yn—1 — Yn |

Again we find that the remaining coefficients can be computed by inverting a tridiagonal,
positive definite system. The main difference between this system and the tridiagonal system
obtained (11) lies in the right-hand side. In (11) the right-hand side involves computing
n —2 2nd order divided differences, while the right-hand side of the above linear system only
involves the values y;, 2 = 0,...,n. In some sense we have already done this computation in
computing the B-splines B;(x).



