Math 241 - Exam 1

Tuesday, Sept 26th, 2017

You have 50 minutes to complete this exam. Do not simplify unless indicated. Calculators are not allowed. Submit each of the five problems on a separate sheet. Partial credit will be given.
(1) (a) $[\mathbf{8} \mathbf{p t s}]$ Let $\mathbf{a}=\mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$ be two vectors. Find $P r_{\mathbf{b}} \mathbf{a}$ and $\operatorname{Pr}_{\mathbf{a}} \mathbf{b}$.
Partial Solution: Use the formula

$$
\operatorname{Pr} r_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}
$$

You should obtain

$$
\operatorname{Pr}_{\mathbf{b}} \mathbf{a}=-\frac{10}{29} \mathbf{i}+\frac{15}{29} \mathbf{j}-\frac{20}{29} \mathbf{k}
$$

and

$$
\operatorname{Pr} r_{\mathbf{a}} \mathbf{b}=-\frac{5}{3} \mathbf{i}-\frac{5}{3} \mathbf{j}+\frac{5}{3} \mathbf{k} .
$$

(b) $[12 \mathbf{p t s}]$ Find the area of the triangle with vertices $(1,0,-1),(2,3,-2),(0,0,1)$.

Partial Solution: Write $P=(1,0,-1), Q=(2,3,-2)$ and $R=(0,0,1)$. The area of the triangle is then exactly half of the area of the paralellagram that shares any two of the sides. For instance

$$
A=\frac{\|\overrightarrow{P Q} \times \overrightarrow{P R}\|}{2}
$$

We have

$$
\overrightarrow{P Q}=\mathbf{i}+3 \mathbf{j}-\mathbf{k}, \quad P R=-\mathbf{i}+2 \mathbf{k}
$$

After computing the cross-product, we obtain

$$
A=\frac{\sqrt{46}}{2}
$$

(2) (a) $[\mathbf{1 0} \mathbf{~ p t s}]$ Consider the two planes given by the equations

$$
2 x-y+3 z=6, \quad \text { and } \quad 3 x+y-2 z=10 .
$$

Find the symmetric equations for the line that lies in the intersection of both planes.

Solution: The planes have normals

$$
\mathbf{N}_{1}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}, \quad \mathbf{N}_{2}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}
$$

The direction of the line is then given by

$$
\mathbf{L}=\mathbf{N}_{1} \times \mathbf{N}_{2}=-\mathbf{i}+13 \mathbf{j}+5 \mathbf{k}
$$

Next we need to find a point on the line, namely a point that lies on both planes. We can do this by setting one variable to 0 , say $x=0$ and solving the linear system

$$
-y+3 z=6, \quad y-2 z=10 .
$$

This can easily be solved to obtain $y=42, z=16$. Therefore the equations for the line are

$$
-x=\frac{y-42}{13}=\frac{z-16}{5} .
$$

(b) [10 pts] Find the distance from the point $(1,-2,1)$ to the line with equations

$$
\frac{x-1}{3}=\frac{1-z}{2}, \quad y=-1 .
$$

Solution: Let $P_{0}=(1,-2,1)$, and $P_{1}=(1,-1,1)$ be a point on the line. We use the distance formula

$$
D=\frac{\left\|\mathbf{L} \times \overrightarrow{P_{0} P_{1}}\right\|}{\|\mathbf{L}\|}
$$

where

$$
\mathbf{L}=3 \mathbf{i}-2 \mathbf{k} \quad \text { and } \quad \overrightarrow{P_{0} P_{1}}=\mathbf{j}
$$

You should obtain the answer

$$
D=\frac{\sqrt{13}}{\sqrt{13}}=1
$$

(3) (a) $[\mathbf{1 0} \mathbf{~ p t s}]$ Suppose that the acceleration of an object is given by

$$
\mathbf{a}(t)=\cos t \mathbf{i}+2 \sin t \mathbf{j},
$$

and at time $t=0$, we know $\mathbf{r}(0)=\mathbf{0}$ and $\mathbf{v}(0)=\mathbf{0}$. Find the formula for the position $\mathbf{r}(t)$ of the object.
Solution: The position $\mathbf{r}(t)$ satisfies

$$
\mathbf{r}^{\prime \prime}(t)=\mathbf{a}(t)
$$

Integrating the equation twice and using the fundamental theorem of calculus for vector-valued functions gives

$$
\mathbf{r}^{\prime}(t)=\sin t \mathbf{i}-2 \cos t \mathbf{j}+\mathbf{C}_{0}
$$

and

$$
\mathbf{r}(t)=-\cos t \mathbf{i}-2 \sin t \mathbf{j}+\mathbf{C}_{0} t+\mathbf{C}_{1} .
$$

Using the fact that $\mathbf{r}^{\prime}(0)=\mathbf{v}(0)=\mathbf{0}$ tells us that $\mathbf{C}_{0}=2 \mathbf{j}$ and similarly $\mathbf{r}(0)=\mathbf{0}$ implies that $\mathbf{C}_{1}=\mathbf{i}$. The find answer is then given by

$$
\mathbf{r}(t)=(1-\cos t) \mathbf{i}+2(t-\sin t) \mathbf{j} .
$$

(b) [10 pts] Suppose the position of an object is given by the vector-valued function $\mathbf{r}(t)$, and suppose that it's accelleration $\mathbf{a}(t)$ is paralell to $\mathbf{r}(t)$. Show that $\mathbf{r}(t) \times$ $\mathbf{v}(t)$ is constant.
Solution: Following the hint given in class. We take the derivative of $\mathbf{r}(t) \times \mathbf{v}(t)$,

$$
(\mathbf{r}(t) \times \mathbf{v})^{\prime}(t)=\underbrace{\mathbf{v}(t) \times \mathbf{v}(t)}_{=0}+\underbrace{\mathbf{r}(t) \times \mathbf{a}(t)}_{=0}=0 .
$$

The first term is zero by properties of the cross-product. The second term is zero since we assumed that $\mathbf{a}(t)$ is paralell to $\mathbf{r}(t)$.
(4) $[20 \mathrm{pts}]$ Consider the vector object with position given by

$$
\mathbf{r}(t)=t \mathbf{i}+\frac{3}{2} \sqrt{2} t^{3 / 2} \mathbf{j}+\frac{1}{2} t^{2} \mathbf{k}
$$

Find $a_{\mathbf{T}}(t)$ and $a_{\mathbf{N}}(t)$. Assigned as extra assignment
(5) (a) $[\mathbf{1 5} \mathbf{~ p t s}]$ Let

$$
\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}+2 \mathbf{k}
$$

Find the length of the curve parameterized by $\mathbf{r}(t)$ for $0 \leq t \leq 1$.
Solution: The length of the curve is given by

$$
L=\int_{0}^{1}\left\|\mathbf{r}^{\prime}(t)\right\|
$$

Using the fact that

$$
\mathbf{r}^{\prime}(t)=e^{t}(\cos t-\sin t) \mathbf{i}+e^{t}(\sin t+\cos t) \mathbf{j}
$$

and

$$
\left\|\mathbf{r}^{\prime}(t)\right\|=e^{t} \sqrt{(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}}=e^{t} \sqrt{2}
$$

The integral becomes

$$
L=\sqrt{2} \int_{0}^{1} e^{t}=\sqrt{2}\left(e^{1}-1\right) .
$$

(b) [5 pts] Determine whether the function

$$
\mathbf{r}(t)=\left(t^{2}-6 t\right) \mathbf{i}+(t-3)^{4} \mathbf{j}+t\left(t^{2}-27\right) \mathbf{k}
$$

is smooth or piecewise smooth.
Solution: The function $\mathbf{r}(t)$ is clearly a differentialble function of t since each of it's components are just polynomials. To see whether it is a smooth parameterization, take the derivative,

$$
\mathbf{r}^{\prime}(t)=(2 t-6) \mathbf{i}+4(t-3)^{3} \mathbf{j}+3 t^{2}-27 \mathbf{k}
$$

We then check to see if $\mathbf{r}^{\prime}(t)$ is zero for any t. Indeed, we find that $\mathbf{r}^{\prime}(3)=0$ so that the parameterization is only piecewise smooth.

