Math 241 - Exam 2 -Solution

Tuesday, Oct 17th, 2017

You have 50 minutes to complete this exam. Do not simplify unless indicated. Calculators are not allowed. Submit each of the five problems on a separate sheet. Please cross out any work you don't want to be graded.
(1) [20 pts] For this problem, consider the surface

$$
\frac{x^{2}}{2}+\frac{y^{2}}{4}-2 z=6
$$

(a) $[12 \mathrm{pts}]$ Find the point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface with normal vector paralell to $3 \mathbf{i}+\mathbf{j}-\mathbf{k}$.
Be sure that the point you find actually lies on the surface!
Solution: A normal to the surface at (x, y, z) is

$$
\mathbf{N}=x \mathbf{i}+\frac{1}{2} y \mathbf{j}-2 \mathbf{k} .
$$

This will be parallel to $3 \mathbf{i}+\mathbf{j}-\mathbf{k}$ if there is a c such that

$$
x=3 c, \quad \frac{1}{2} y=c, \quad-2=-c .
$$

Solving this for x and y gives $x=6, y=4$. To determine the z value, we plug this into the equation for the surface and obtain

$$
z=\frac{1}{2}\left(\frac{36}{2}+\frac{16}{4}-6\right)=8 .
$$

Therefore the point $(6,4,8)$ is the one we are looking for.
(b) $[\mathbf{8} \mathbf{p t s}]$ Find the equation for the plane tangent to the surface at the point $(2,4,0)$.

Solution: At $(2,4,0)$, a normal vector to the plane is $\mathbf{N}=2 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$. Therefore the equation for the tangent plane is

$$
2(x-2)+2(y-4)-2 z=0 .
$$

This simplifies to

$$
x+y-z=6 \text {. }
$$

(2) $[\mathbf{2 0} \mathbf{~ p t s}]$ Let

$$
f(x, y, z)=\sqrt{5 x^{2}+3 y^{2}+2 z^{2}} .
$$

Find an approximation of $f(0.9,2.1,2.1)$ using the tangent 'plane' approximation. Simplify your answer. You should not need a calculator.

Solution: $(0.9,2.1,2.1)$ is close to $(1,2,2)$, and it is easy to verify that

$$
f(1,2,2)=\sqrt{25}=5 .
$$

The partial derivatives of f are

$$
f_{x}=\frac{5 x}{\sqrt{5 x^{2}+3 y^{2}+2 z^{2}}}, \quad f_{y}=\frac{3 y}{\sqrt{5 x^{2}+3 y^{2}+2 z^{2}}}, \quad f_{z}=\frac{2 z}{\sqrt{5 x^{2}+3 y^{2}+2 z^{2}}} .
$$

when evaluated at $(1,2,2)$ give

$$
f_{x}(1,2,2)=1, \quad f_{y}(1,2,2)=\frac{6}{5}, \quad f_{z}(1,2,2)=\frac{4}{5} .
$$

The tangent plane approximation is then given by

$$
\begin{aligned}
f(.9,2.1,2.1) & \approx f(1,2,2)+f_{x}(1,2,2)(.9-1)+f_{y}(1,2,2)(2.1-2)+f_{z}(1,2,2)(2.1-2) \\
& =5+1(-.1)+\frac{6}{5}(.1)+\frac{4}{5}(.1) \\
& =5.1
\end{aligned}
$$

(3) $[\mathbf{2 0} \mathbf{~ p t s}]$ For this problem, consider the function

$$
f(x, y)=\sin (x y)-x y
$$

(a) [10 pts] Find the unit vector direction in which f increases the most rapidly at the point $(1, \pi / 2)$. What is the the largest directional derivative at this point?

Solution: The gradient of f is

$$
\nabla f(x, y)=(y \cos x y-y) \mathbf{i}+(x \cos x y-x) \mathbf{j}
$$

and gives the direction of greatest increas of f at (x, y). Evaluating this at $(1, \pi / 2)$ gives

$$
\begin{aligned}
\nabla f(1, \pi / 2) & =\left(\frac{\pi}{2} \cos \frac{\pi}{2}-\frac{\pi}{2}\right) \mathbf{i}+\left(\cos \frac{\pi}{2}-1\right) \mathbf{j} \\
& =-\frac{\pi}{2} \mathbf{i}-\mathbf{j}
\end{aligned}
$$

Normalizing this gives the unit vector of greatest increase

$$
\mathbf{u}=\frac{-\pi}{\sqrt{\pi^{2}+4}} \mathbf{i}+\frac{-2}{\sqrt{\pi^{2}+4}} \mathbf{j}
$$

The largest directional derivative is then just given by

$$
D_{\mathbf{u}} f(1, \pi / 2)=\|\nabla f(1, \pi / 2)\|=\sqrt{\left(\frac{\pi}{2}\right)^{2}+1}
$$

(b) $[\mathbf{1 0} \mathbf{~ p t s}]$ Find the unit vector direction in which f decreases the most at the point $(1, \pi)$.

Solution: The direction of greatest decrease of the f is in the diretion of the negative of the gradient. This gives the following unit vector

$$
\mathbf{u}=\frac{-\nabla f(1, \pi)}{\|\nabla f(1, \pi)\|}=\frac{\pi}{\sqrt{\pi^{2}+1}} \mathbf{i}+\frac{1}{\sqrt{\pi^{2}+1}} \mathbf{j} .
$$

(4) [20 pts] Find and classify all critical points of the function

$$
f(x, y)=2 x^{2} y-4 x^{2}-2 y^{2} .
$$

as a relative minimum, relative maximum, or saddle.
Solution: The critical points are located at (x, y) which satisfy

$$
f_{x}=4 x y-8 x=0, \quad f_{y}=2 x^{2}-4 y=0
$$

The first equation has solutions at $x=0$ and $y=2$, substituting this into the second equation implies that when $x=0$, then $y=0$ and when $y=2$ then $x= \pm 2$. Therefore the critical points are at

$$
(0,0), \quad(2,2), \quad(-2,2)
$$

To classify these points we conduct the second derivative test. We have

$$
f_{x x}=4 y-8, \quad f_{y y}=-4, \quad f_{x y}=4 x
$$

and so

$$
D(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=-16(y-2)-(4 x)^{2} .
$$

Since

$$
D(0,0)=32>0 \quad f_{x x}(0,0)=-8<0,
$$

then $(0,0)$ is a relative min. Also since

$$
D(\pm 2,2)=-64<0
$$

then both $(2,2)$ and $(-2,2)$ are saddles.
(5) [20 pts] Consider the function

$$
f(x, y)=2 x y .
$$

Use Lagrange multipliers to find the global extreme values of of $f(x, y)$ on the ellipse

$$
x^{2}+2 y^{2}=4
$$

Hint: there should be 4 critical points for the constrained system.
Solution: The constraing function is $g(x, y)=x^{2}+2 y^{2}$. Using Lagrange multipliers, we must find solutions of the system

$$
2 y=\lambda 2 x, \quad 2 x=\lambda 4 y, \quad x^{2}+2 y^{2}=4
$$

Solving for λ in the first two equations and setting the expressions equal (eliminating $\lambda)$ gives

$$
\frac{y}{x}=\frac{x}{2 y} .
$$

This implies that $2 y^{2}=x^{2}$. Substituting this into the constraint then gives,

$$
2 x^{2}=4,
$$

and therefore $x= \pm \sqrt{2}$. For each of these x values the constraint implies that y has to solve

$$
y^{2}=1,
$$

and therefore $y= \pm 1$. This implies that there are four critical points given by

$$
(\sqrt{2}, 1), \quad(-\sqrt{2}, 1), \quad(\sqrt{2},-1), \quad(-\sqrt{2},-1)
$$

Substituting these values back into f gives

$$
\begin{aligned}
f(\sqrt{2}, 1) & =2 \sqrt{2} \\
f(-\sqrt{2}, 1) & =-2 \sqrt{2} \\
f(\sqrt{2},-1) & =-2 \sqrt{2} \\
f(-\sqrt{2},-1) & =2 \sqrt{2} .
\end{aligned}
$$

It follows that there is a global max of $2 \sqrt{2}$ at the points $(\sqrt{2}, 1)$ and $(-\sqrt{2},-1)$ and a global min of $-2 \sqrt{2}$ at the points $(-\sqrt{2}, 1)$ and $(\sqrt{2},-1)$.

