Math 241 - Exam 3

Tuesday, Nov 7th, 2017

You have 50 minutes to complete this exam. Do not simplify unless indicated. Calculators are not allowed. Submit each of the five problems on a separate sheet. Please cross out any work you don't want to be graded.
(1) (a) [10pts] Perform a change of coordinantes to polar and evaluate the following integral

$$
\int_{0}^{\sqrt{3}} \int_{\frac{1}{\sqrt{3}} x}^{\sqrt{4-x^{2}}} e^{x^{2}+y^{2}} \mathrm{~d} y \mathrm{~d} x
$$

Solution: The region integrated over is the region of a disk with angles from $\theta=\pi / 3$ to $\theta=\pi / 2$. This can be easily changed to polar coordinates

$$
\int_{\pi / 3}^{\pi / 2} \int_{0}^{2} r e^{r^{2}} \mathrm{~d} r \mathrm{~d} \theta=\frac{\pi}{12}\left(e^{4}-1\right)
$$

(b) [10pts] Evaluate the following iterated integral

$$
\int_{0}^{1} \int_{x}^{1} e^{y^{2}} \mathrm{~d} y \mathrm{~d} x
$$

Solution: To evaluate this integral, we will find it easier to change the order of integration. The region is written as a vertically simple one as $x \leq y \leq 1$, $0 \leq x \leq 1$. However it can also be written as horizontally simple $0 \leq x \leq y$, $0 \leq y \leq 1$. The integral becomes

$$
\int_{0}^{1} \int_{0}^{y} e^{y^{2}} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} y e^{y^{2}} \mathrm{~d} y=\frac{1}{2}\left(e^{1}-1\right)
$$

(2) [$20 \mathbf{~ p t s}]$ Consider the (ice cream cone) region D inside the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ and above the cone $z=\sqrt{3 x^{2}+3 y^{2}}$. Find the volume of the region D by evaluating an iterated integral in spherical coordinates. Hint: The sphere above can be written in spherical coordinates as $\rho=f(\phi)$. What is f ?

Solution: The sphere can be written as $\rho=2 \cos \phi$ and the cone $\phi=\pi / 6$. Volume can be written as an iterated integral in spherical coordinates.

$$
\begin{aligned}
V & =\iiint_{D} 1 \mathrm{~d} V=\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{2 \cos \phi} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta \\
& =\frac{16 \pi}{3} \int_{0}^{\pi / 6}(\cos \phi)^{3} \sin \phi \mathrm{~d} \phi \\
& =\frac{4 \pi}{3}\left(-\left.(\cos \phi)^{4}\right|_{0} ^{\pi / 6}\right)=\frac{4 \pi}{3}\left(1-\frac{9}{16}\right)=\frac{7 \pi}{12}
\end{aligned}
$$

(3) (a) [10 pts] Let D be the region inside the cylinder $(x-2)^{2}+y^{2}=4$ and between the two planes $z=2,2 x-y+z=8$. Write the following integral $\iiint_{D} x y \mathrm{~d} V$ as an iterated triple integral in cylindrical coordinates. Do not evaluate

Solution: The region D in cylindrical coordinates is given by $2 \leq z \leq 8-$ $2 r \cos \theta+r \sin \theta, 0 \leq r \leq 4 \cos \theta,-\pi / 2 \leq \theta \leq \pi / 2$. Therefore the integral can be written as

$$
\iiint_{D} x y \mathrm{~d} V=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{4 \cos \theta} \int_{2}^{8-2 r \cos \theta+r \sin \theta} r^{3} \cos \theta \sin \theta \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta
$$

(b) $[10 \mathbf{~ p t s}]$ Let D be the region in the first octant between the two spheres $x^{2}+y^{2}+$ $z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ and below $z=\sqrt{x^{2}+y^{2}}$. Write the volume of the region as an iterated triple integral in spherical coordinates. Do not evaluate

Solution: The region D can be described by $1 \leq \rho \leq 2, \pi / 4 \leq \phi \leq \pi / 2$, $0 \leq \theta \leq 2 \pi$. Therefore the volume is given by

$$
\iiint_{D} 1 \mathrm{~d} V=\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{1}^{2} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta
$$

(4) In the following problems, give a smooth parameterization $\mathbf{r}(u, v)$ of the following surfaces (be sure describe the region that the parameters (u, v) take values in).
(a) [10 pts] The surface of revolution obtained by revolving the function $f(z)$ about the z axis for $0 \leq z \leq 2$.

Solution: The surface of revolution is given by

$$
\mathbf{r}(\theta, z)=f(z) \cos \theta \mathbf{i}+f(z) \sin \theta \mathbf{j}+z \mathbf{k}
$$

(a) [10 pts] The torus $\rho=\sin \phi$ (written here in spherical coordinates). Recall x, y, z described in terms of spherical coordinates

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

Since $\rho=\sin \phi$ defines a relation between ρ and ϕ, we can substitute this into the expressions above to obtain a parameterization in the $\theta \phi$ variables,

$$
\mathbf{r}(\theta, \phi)=\sin \phi^{2} \cos \theta \mathbf{i}+\sin \phi^{2} \sin \theta \mathbf{j}+\sin \phi \cos \phi \mathbf{k} .
$$

(5) [20 pts] Let R be the region bounded by the ellipse $\frac{x^{2}}{9}+y^{2}=4$. Perform a change of variables to transform the integral

$$
\iint_{R} e^{x+y} \mathrm{~d} A
$$

to an integral over the region S bounded by the circle $x^{2}+y^{2}=1$. Write the integral in polar coordinates but do not evaluate.

Solution: To change variables, write the ellipse as

$$
\left(\frac{x}{6}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1
$$

We then choose $u=x / 6$ and $v=y / 2$, so that $x=6 u$ and $y=2 v$. The Jacobian is therefore

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
6 & 0 \\
0 & 2
\end{array}\right|=12 .
$$

Therefore we can change the integral to

$$
\iint_{R} e^{x+y} \mathrm{~d} A=12 \iint_{S} e^{6 u+2 v} \mathrm{~d} A
$$

where S is the region inside of the circle $u^{2}+v^{2}=1$. In polar coordinates, this becomes

$$
12 \int_{0}^{2 \pi} \int_{0}^{1} e^{6 r \cos \theta+2 r \sin \theta} r \mathrm{~d} r \mathrm{~d} \theta
$$

(6) Bonus [10pts] Consider the region D inside the sphere $x^{2}+y^{2}+z^{2}=4$ and above the plane $z=1$. Write the integral $\iiint_{D}\left(x^{2}+y^{2}+z^{2}\right)^{-1} \mathrm{~d} V$ as an iterated integral in spherical coordinates and evaluate.

Solution: The region in spherical coordinates is given by sec $\phi \leq \rho \leq 2,0 \leq \phi \leq \pi / 3$, $0 \leq \theta \leq 2 \pi$. The reason that ϕ ranges between 0 an $\pi / 3$ is because the sphere $\rho=2$ and the plane $\rho \cos \phi=1$ intersect when $\cos \phi=1 / 2$ (i.e $\phi=\pi / 3$). The integral can be written in spherical coordinates as

$$
\begin{aligned}
\iiint_{D} \rho^{-2} \mathrm{~d} V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{\sec \phi}^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta \\
& =2 \pi \int_{0}^{\pi / 3}(2 \sin \phi-\tan \phi) \mathrm{d} \phi \\
& =2 \pi\left(-\left.2 \cos \phi\right|_{0} ^{\pi / 3}+\left.\ln (\cos \phi)\right|_{0} ^{\pi / 3}\right) \\
& =2 \pi(1-\log 2)
\end{aligned}
$$

