Math 241 - Exam 4

Monday, Dec 4th, 2017

You have 50 minutes to complete this exam. Do not simplify unless indicated. Calculators are not allowed. Submit each of the five problems on a separate sheet. Please cross out any work you don't want to be graded.
(1) (a) $[10 \mathrm{pts}]$ Evaluate the integral $\int_{C} 3 y^{2} \mathrm{~d} s$ where C is the top half of a circle of radius 2 in the x, y plane.

Solution: The top half of the circle can be parameterized by $\mathbf{r}(t)=2 \cos t \mathbf{i}+$ $2 \sin t \mathbf{j}, 0 \leq t \leq \pi$, which satisfies $\left\|\mathbf{r}^{\prime}(t)\right\|=2$. The integral is then

$$
\int_{C} 3 y^{2} \mathrm{~d} s=24 \int_{0}^{\pi}(\cos t)^{2} \mathrm{~d} t=12 \pi
$$

(b) [10 pts] Evaluate the line integral

$$
\int_{C}(2 x y+z) \mathrm{d} x+\left(x^{2}+2 z y\right) \mathrm{d} y+\left(y^{2}+x+1\right) \mathrm{d} z
$$

where C is parameterized by $\mathbf{r}(t)=\sin \left(\frac{\pi}{2} t\right) \mathbf{i}+2 t e^{1-t} \mathbf{j}+\sqrt{1-t} \mathbf{k}, \quad 0 \leq t \leq 1$.
Solution: Note that the vector field is conservative since

$$
M_{y}=2 x=N_{x}, \quad M_{z}=1=P_{x}, \quad N_{z}=2 y=P_{y}
$$

The potential function can easily be seen to be given by

$$
f(x, y, z)=x^{2} y+y^{2} z+x z+z
$$

The start and end points of the curve are given by

$$
P=\mathbf{r}(0)=(0,0,1), \quad Q=\mathbf{r}(1)=(1,2,0)
$$

By the fundamental theorem of line integrals, the line integral is simply given by

$$
f(1,2,0)-f(0,0,1)=2-1=1
$$

(2) [$20 \mathbf{~ p t s}]$ Let Σ be the part of the paraboloid $z=y^{2}-x^{2}$ that intersects the cylinder $r=2 \sin \theta$. Parameterize the surface Σ and write the following surface integral

$$
\iint_{\Sigma} x^{2} z \mathrm{~d} S
$$

as an iterated double integral. DO NOT EVALUATE.

Solution: The surface can be parameterized by

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(y^{2}-x^{2}\right) \mathbf{k} .
$$

for x, y inside the region R with boundary $r=2 \sin \theta$. Since this is the graph of a function we can easily compute

$$
\left\|\mathbf{r}_{x} \times \mathbf{r}_{y}\right\|=\sqrt{4 x^{2}+4 y^{2}+1}
$$

The surface intgral can then be written as

$$
\iint_{\Sigma} x^{2} z \mathrm{~d} S=\iint_{R} x^{2}\left(y^{2}-x^{2}\right) \sqrt{4 x^{2}+4 y^{2}+1} \mathrm{~d} A .
$$

Using Polar coordinates, this integral can be written as an iterated integral

$$
\int_{0}^{\pi} \int_{0}^{2 \sin \theta} r^{5}(\cos \theta)^{2}\left[(\sin \theta)^{2}-(\cos \theta)^{2}\right] \sqrt{4 r^{2}+1} \mathrm{~d} r \mathrm{~d} \theta
$$

(3) [20 pts] Evaluate the line integral $\int_{C} 4 x y \mathrm{~d} x+x^{2} \mathrm{~d} y$, where C is the closed counterclockwise oriented curve in the x, y plane defined as the boundary of the part of the disk of radius 2 that lies in the first quadrant.

Solution: Since the curve is closed, we use Green's Theorem

$$
\int_{C} 4 x y \mathrm{~d} x+x^{2} \mathrm{~d} y=-\iint_{R} 2 x \mathrm{~d} A
$$

where R is the part of the disk of radius 2 in the first quadrant. Writing this in polar coordinates allows us to evaluate it.

$$
-2 \int_{0}^{\pi / 2} \int_{0}^{2} r^{2} \cos \theta \mathrm{~d} r \mathrm{~d} \theta=-2\left(\int_{0}^{2} r^{2} \mathrm{~d} r\right)\left(\int_{0}^{\pi / 2} \cos \theta \mathrm{~d} \theta\right)=-\frac{16}{3}
$$

(4) [20 pts] Consider the curve C given by the triangle with vertices $(1,0,0),(0,3,0)$ and $(0,0,3)$ oriented in the counter-clockwise direction when viewed from above. Apply Stokes' Theorem to the line integral

$$
\int_{C}(x z \mathbf{i}-y z \mathbf{j}+x y z \mathbf{k}) \cdot \mathrm{d} \mathbf{r}
$$

and write the resulting flux integral as a double iterated integral. DO NOT EVALUATE.

Solution: Let Σ be the part of the plane that lies inside the trianle formed by the three points, and let it have upward facing normal. The plane can be described by $3 x+y+z=3$, where x and y are restricted to lie beneath the line $3 x+y=3$ and
in the first quadrant. To apply Stokes theorem, we take the curl of the vector field $\mathbf{F}=x z \mathbf{i}-y z \mathbf{j}+x y z \mathbf{k}$,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x z & -y z & x y z
\end{array}\right|=(x z+y) \mathbf{i}+(x-y z) \mathbf{j} .
$$

Therefore, Stokes theorem implies

$$
\begin{aligned}
& \int_{C}(x z \mathbf{i}-y z \mathbf{j}+x y z \mathbf{k}) \cdot \mathrm{d} \mathbf{r}=\iint_{\Sigma}((x z+y) \mathbf{i}+(x-y z) \mathbf{j}) \cdot \mathbf{n} \mathrm{d} S \\
&=\int_{0}^{1} \int_{0}^{3-3 x}[(x(3-y-3 x)+y) \mathbf{i}+(x-y(3-3 x-y)) \mathbf{j}] \cdot(3 \mathbf{i}+\mathbf{j}+\mathbf{k}) \mathrm{d} y \mathrm{~d} x \\
&=\int_{0}^{1} \int_{0}^{3-3 x}\left(10 x-9 x^{2}+y^{2}\right) \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

(5) [20 $\mathbf{~ t t s}]$ Let Σ be the closed surface comprised of the piece of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the two spheres of radius 1 and radius 3 as well as the parts of those two sphere that lie above the cone. Assume that Σ is oriented with outward facing normal n. Apply the Divergence Theorem to the flux integral

$$
\iint_{\Sigma}\left(x^{2} y \mathbf{i}+x y^{2} \mathbf{j}+x y z \mathbf{k}\right) \cdot \mathbf{n} \mathrm{d} S
$$

and write the resulting integral as a triple iterated integral. DO NOT EVALUATE.
Solution: Define D to be the region inside of the closed surface Σ. This can be described in spherical coordinates by $1 \leq \rho \leq 3,0 \leq \phi \leq \pi / 4,0 \leq \theta \leq 2 \pi$. Using the divergence theorem, we obtain

$$
\begin{aligned}
\iint_{\Sigma}\left(x^{2} y \mathbf{i}+x y^{2} \mathbf{j}+x y z \mathbf{k}\right) \cdot \mathbf{n} \mathrm{d} S & =\iiint_{D} 5 x y \mathrm{~d} V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{1}^{3} 5 \rho^{4}(\sin \phi)^{3} \cos \theta \sin \theta \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta .
\end{aligned}
$$

