Math 241 Fall 2012 Final Exam

- Follow the instructions as to which problem goes on which answer sheet. You may use the back of the answer sheets.
- No calculators are permitted.
- One page of notes is permitted.
- Do not evaluate integrals or simplify answers unless indicated.

Please put problem 1 on answer sheet 1

1. Consider the vectors $\bar{a}=2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\bar{b}=\hat{\imath}+\hat{\jmath}+\hat{k}$.
(a) Find the projection of \bar{a} onto \bar{b}. Call this \bar{p}.
(b) Find a vector \bar{c} so that $\bar{a}=\bar{p}+\bar{c}$.
(c) Are \bar{c} and \bar{p} orthogonal (perpendicular)? Justify.
(d) Find the equation of the plane containing the point $(1,2,3)$ which is parallel to both the vectors \bar{a} and \bar{b}.

Please put problem 2 on answer sheet 2

2. (a) Find the length of the curve parametrized by

$$
\bar{r}(t)=\frac{2 \sqrt{2}}{3} t^{3 / 2} \hat{\imath}+t \sin t \hat{\jmath}+t \cos t \hat{k} \text { for } 0 \leq t \leq \pi
$$

Note: If you're careful the integrand should simplify a lot before integration.
(b) Find the tangential component of acceleration for $\bar{r}(t)=e^{t} \hat{\imath}+t \sqrt{2} \hat{\jmath}+e^{-t} \hat{k}$.

Please put problem 3 on answer sheet 3

3. Let $f(x, y, z)=x e^{\left(y^{2}-z^{2}\right)}$.
(a) Find the direction of maximum increase of f at the point $(1,2,-2)$.
(b) Find the directional derivative of f in the direction of motion of the object parametrized by $\bar{r}(t)=t \hat{\imath}+2 \cos (t-1) \hat{\jmath}-2 e^{t-1} \hat{k}$ at $(1,2,-2)$.

Please put problem 4 on answer sheet 4

4. Use the method of Lagrange multipliers to find the maximum and minimum of the function $f(x, y)=x^{2}+(y-2)^{2}$ on the hyperbola $x^{2}-y^{2}=1$.

Turn Over!

Please put problem 5 on answer sheet 5

5. Evaluate the integral
where R is the region in the $x y$-plane bounded above by the circle $x^{2}+y^{2}=2$ and below by the parabola $y=\frac{1}{2} x^{2}-1$.

Please put problem 6 on answer sheet 6

6. Consider the solid D inside the cylinder $x^{2}+y^{2}=4$, bounded below by the $x y$-plane and above by the cone $z=\sqrt{x^{2}+y^{2}}$. Consider the triple integral

$$
\iiint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d V
$$

(a) Rewrite this as an iterated integral in cylindrical coordinates.
(b) Evaluate this integral.

Please put problem 7 on answer sheet 7

7. Let C be the intersection of the paraboloid $z=9-x^{2}-y^{2}$ and the cylinder $r=3 \sin \theta$ with clockwise orientation when viewed from above. Use Stokes' Theorem to convert

$$
\int_{C}(2 x y \hat{\imath}+z \hat{\jmath}-x z \hat{k}) \cdot d \bar{r}
$$

to a surface integral and then parametrize the surface and proceed to an iterated double integral but do not evaluate.

Please put problem 8 on answer sheet 8
8. (a) Evaluate the line integral $\int_{C}-z d s$ where C is the curve parametrized by $\bar{r}(t)=\frac{2}{3} t^{3 / 2} \hat{\imath}-2 t \hat{\jmath}-6 \hat{k}$ for $0 \leq t \leq 3$.
(b) Suppose Σ is composed of both the hemisphere $z=\sqrt{9-x^{2}-y^{2}}$ and the disk $x^{2}+y^{2} \leq 9 \quad[10 \mathrm{pts}]$ in the $x y$-plane, oriented outwards. Evaluate

$$
\iint_{\Sigma}[(2 x-y) \hat{\imath}+(3 x y+y) \hat{\jmath}+(z-3 x z) \hat{k}] \cdot \bar{n} d S
$$

