Math 241 Spring 2013 Final Exam

- Follow the instructions as to which problem goes on which answer sheet. You may use the back of the answer sheets.
- No calculators are permitted.
- One page of notes is permitted.
- Do not evaluate integrals or simplify answers unless indicated.

Please put problem 1 on answer sheet 1

- 1. (a) Find the distance from the point (1, -2, 2) to the plane 3x + y 4z = 2. [5 pts]
 - (b) Find all possible x so that 3i + 5j is parallel to $5x^2i + 10j$. [5 pts]
 - (c) Find the tangential component of acceleration for $\mathbf{r}(t) = 2t^2 \mathbf{i} + \frac{1}{t} \mathbf{j} + t \mathbf{k}$ at t = -1. [10 pts]

Please put problem 2 on answer sheet 2

2. (a) Find the equation of the plane containing both the point (0,1,-2) and the line with [10 pts] symmetric equations $\frac{x-1}{2} = y+2 , \quad z=3$

(b) Find the tangent vector
$$\mathbf{T}(\pi/6)$$
 for the curve $\mathbf{r}(t) = 2\cos(t)\mathbf{i} + 3\sin(2t)\mathbf{j}$. [10 pts]

Please put problem 3 on answer sheet 3

- 3. Define $f(x, y) = x^2y + 3y$.
 - (a) Find the vector equation of the line perpendicular to the level curve of f at (2,-1). [10 pts]
 - (b) Find the value of the maximal directional derivative of f at (2,-1). [4 pts]
 - (c) If u is a unit vector which makes an angle of $\pi/3$ with ∇f at (2,-1), find $D_{\mathbf{u}}f(2,-1)$. [6 pts]

Please put problem 4 on answer sheet 4

4. Let $f(x,y) = 2x^3 - 24x + 2y^3 - 3y^2 - 12y - 1$. Find all critical points for f and determine [20 pts] whether each critical point yields a relative maximum, relative minimum or saddle point.

Please put problem 5 on answer sheet 5

5. Use the method of Lagrange multipliers to find the maximum and minimum values of the [20 pts] function f(x,y) = xy + 2x on the circle $x^2 + y^2 = 4$.

Please put problem 6 on answer sheet 6

- 6. (a) Evaluate $\int_0^1 \int_x^1 \cos(y^2) \ dy \ dx$. [10 pts]
 - (b) Set up the iterated integral in polar coordinates for $\iint_R xy \ dA$ where R is the region [10 pts inside the circle $r = 2\sin\theta$ and above the line y = 1. Do not evaluate.

Please put problem 7 on answer sheet 7

7. Evaluate $\int_C x^2 dx + 5xy dy$ where C is the triangle with vertices (0,0), (6,3) and (6,6) with [20 pts counterclockwise orientation.

Please put problem 8 on answer sheet 8

- 8. (a) Evaluate the line integral $\int_C x \, ds$ where C is the straight line segment from (1,2) to [10 pts] (5,10).
 - (b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the curve $\mathbf{r}(t) = (t^2 + t) \mathbf{i} + (\frac{1}{t}) \mathbf{j} + (t^3 2t + 1) \mathbf{k}$ [10 pts] for $1 \le t \le 2$ and $\mathbf{F}(x, y, z) = (2xy + z) \mathbf{i} + (x^2 + 3) \mathbf{j} + x \mathbf{k}$.

Please put problem 9 on answer sheet 9

9. Let C be the intersection curve of the cylinder $x^2 + y^2 = 9$ with the plane z = 10 - y [20 pts] and with clockwise orientation when viewed from above. Use Stokes' Theorem to convert $\int\limits_C (xz\,\mathbf{i} + z^2\,\mathbf{j} + y\,\mathbf{k})\cdot d\mathbf{r}$ to a surface integral. Then proceed until you have an iterated integral but do not evaluate.

Please put problem 10 on answer sheet 10

10. Evaluate $\iint_{\Sigma} (2\mathbf{i} + 4\mathbf{j} + z^2\mathbf{k}) \cdot \mathbf{n} \, dS$ where Σ is the part of the cone $z = \sqrt{3x^2 + 3y^2}$ inside [20 pts] the sphere $x^2 + y^2 + z^2 = 9$ as well as the part of the sphere inside the cone, with inward orientation.

Welcome to the End of the Exam