Math 241 Spring 2014 Final Exam

- Follow the instructions as to which problem goes on which answer sheet. You may use the back of the answer sheets.
- No calculators are permitted.
- Do not evaluate integrals or simplify answers unless indicated.

Please put problem 1 on answer sheet 1

- 1. (a) Find the symmetric equation of the line containing (1,2,3) and (-1,5,3). [10 pts]
 - (b) Find the distance between (3, -5, 2) and the plane 2x y + 3z = 6. Simplify. [10 pts]

Please put problem 2 on answer sheet 2

- 2. (a) For $\mathbf{u} = 2\mathbf{i} \mathbf{j} + 3\mathbf{k}$ and $\mathbf{v} = 4\mathbf{i} + \mathbf{j} 2\mathbf{k}$, find $Pr_{\mathbf{u}}\mathbf{v}$. [10 pts]
 - (b) Find the curvature $\kappa(1)$ of $\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j}$. [10 pts]

Please put problem 3 on answer sheet 3

- 3. (a) Find T(1) for $\mathbf{r}(t) = t \mathbf{i} 2t^3 \mathbf{j} + \frac{1}{t} \mathbf{k}$. [5 pts]
 - (b) Find the tangential component of acceleration for $\mathbf{r}(t) = t^3 \mathbf{i} 4t \mathbf{j} + t^2 \mathbf{k}$ at t = 2. [5 pts]
 - (c) Find the point at which the line $\mathbf{r}(t) = (t+1)\mathbf{i} 2t\mathbf{j} + (3t-2)\mathbf{k}$ passes through the plane [10 pts] x + y z = 10.

Please put problem 4 on answer sheet 4

4. Use the method of Lagrange multipliers to find the maximum and minimum values of the [20 pts] function f(x, y) = xy on the circle $(x - 2)^2 + y^2 = 4$.

Please put problem 5 on answer sheet 5

5. Find and categorize all relative extrema for the function $f(x,y) = x^3 - 2xy + y^2$. [20 pts]

Turn Over!

Please put problem 6 on answer sheet 6

- 6. Let $f(x,y) = \ln(x^2 + xy + y^2)$.
 - (a) Find the direction of maximum increase of f at (1,0) as a unit vector.

[7 pts]

(b) Find the maximum directional derivative at (1,0).

[6 pts]

(c) Calculate the directional derivative of f at (0,1) in the direction of 2i + 3j.

[7 pts]

Please put problem 7 on answer sheet 7

- 7. (a) Find a parametrization for the part of the cylinder $y^2 + z^2 = 1$ which lies between x = -2 [5 pts] and x = 2.
 - (b) Find the equation of the plane tangent to the cylinder in part (a) at the point $\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. [15 pts] Write your answer in the form ax + by + cz = d.

Please put problem 8 on answer sheet 8

8. Find the volume of the solid region D that is bounded on the sides by the upper nappe of the [20 pts] cone $z^2 = \frac{1}{3}(x^2 + y^2)$, on the top by the sphere $x^2 + y^2 + z^2 = 9$ and below by the sphere $x^2 + y^2 + z^2 = 1$.

Please put problem 9 on answer sheet 9

9. Let C be the intersection curve of the parabolic sheet $y=x^2$ with the cylinder $x^2+z^2=4$, [20 pts oriented clockwise when viewed from the positive y-axis. Apply Stokes' Theorem to the integral $\int_C 2y \ dx + xz \ dy + z^2 \ dz$ and continue until you have an iterated double integral. Do not evaluate.

Please put problem 10 on answer sheet 10

- 10. (a) Evaluate $\int_C 7y \ dx + 12y \ dy$ where C is the semicircle $y = \sqrt{9 x^2}$ along with the line [8 pts] segment joining (-3,0) with (3,0), oriented clockwise.
 - (b) Find the surface area of the portion of the sphere $x^2 + y^2 + z^2 = 4$ inside the cylinder [12 pts] $x^2 + y^2 2y = 0$ as an iterated double integral in r and θ . Do not evaluate.

Welcome to the End of the Exam