You have 15 minutes to complete this quiz. No calculator, cheat sheet or aid of any kind is allowed.

1. $[10 \mathrm{pts}]$ Let C be the closed curve that lies in the intersection of the hyperboloid $z=x^{2}-y^{2}$ and the cylinder $x^{2}+y^{2}=1$, oriented in the counter-clockwise direction when viewed from above. Apply Stoke's Theorem to the line integral

$$
\int_{C} x z \mathrm{~d} x+y z \mathrm{~d} y-x^{2} \mathrm{~d} z
$$

and write the resulting flux integral as an iterated integral (DO NOT EVALUATE).
Solution: Let $\mathbf{F}=x z \mathbf{i}+y z \mathbf{j}-x^{2} \mathbf{k}$. To apply Stokes Theorem we take the curl of \mathbf{F},

$$
\nabla \times \mathbf{F}=-y \mathbf{i}+3 x \mathbf{j} .
$$

The surface Σ with boundary C has induced upward facing normal \mathbf{n}. It is the graph of a function $z=f(x, y)=x^{2}-y^{2}$ for (x, y) belonging to the circular region R define by $x^{2}+y^{2} \leq 1$. We apply Stokes Theorem and then parameterize the resulting surface integral to obtain

$$
\begin{aligned}
\int_{C} x z \mathrm{~d} x+y z \mathrm{~d} y-x^{2} \mathrm{~d} z & =\iint_{\Sigma}(-y \mathbf{i}+x \mathbf{j}) \cdot \mathbf{n} \mathrm{d} S \\
& =\iint_{R}(-y \mathbf{i}+3 x \mathbf{j}) \cdot(-2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}) \mathrm{d} A \\
& =\iint_{R} 8 x y \mathrm{~d} A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} 8 r^{3} \sin \theta \cos \theta \mathrm{~d} r \mathrm{~d} \theta
\end{aligned}
$$

