You have all class to comlpete this. You may work in groups.

1. [3pts] Consider the vectors $\mathbf{a}=2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}, \mathbf{b}=\mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{c}=\mathbf{i}-\mathbf{j}+9 \mathbf{k}$.
(a) Show that \mathbf{a} and \mathbf{b} are orthogonal and find the equation for the plane that passes through the origin and \mathbf{a} and \mathbf{b}.
(b) Show that \mathbf{c} lies in the same plane as \mathbf{a} and \mathbf{b}.
(c) Resolve \mathbf{b} into two two vectors one paralell to \mathbf{a} and one parallel to \mathbf{b}.
2. [2pts] Consider the two planes $2 x-3 y+4 z=2$ and $x-z=1$. Write the symmetric equations for the line ℓ that lies in the intersection of the planes.
3. [2pts] Find the distance D from the point $(1,-2,5)$ to the line

$$
x=1+3 t, \quad y=-2-4 t, \quad z=12 t .
$$

4. [3pts] Consider the vector valued function $\mathbf{r}(t)=e^{t} \mathbf{i}+e^{t} \mathbf{j}+\sqrt{2} \mathbf{k}$ find the tangential and normal components $a_{\mathbf{T}} a_{\mathbf{N}}$ of the accelleration \mathbf{a}.
