You have all class to comlpete this. You may work in groups.

1. (a) $[\mathbf{1 p t}]$ Evaluate the integral

$$
\int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} \sin \left(x^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

(b) $[\mathbf{1} \mathbf{p t}]$ Set up an iterated polar integral for $\iint_{R} x y \mathrm{~d} A$, where R is the region inside the circle $r=2 \sin \theta$ and above $y=1$. Do not evaluate.
2. [3pts] Evaluate

$$
\iint_{R} 3 x y \mathrm{~d} A
$$

where R is region bounded by the curves $x+3 y=1, x+3 y=3, x-y=1$ and $x-y=-1$.
3. (a) $[\mathbf{1} \mathbf{p t}]$ Let D the solid region inside the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$, outside of $x^{2}+$ $y^{2}+z^{2}=4$ and below $z=6$. Write the integral $\iiint_{D} z y \mathrm{~d} V$ as a triple iterated integral in spherical coordinates. Do not evaluate.
(b) [1pt] Let D be the region in the first octant which is below the plane $x+2 y+$ $3 z=6$. Write the integral $\iiint_{D} x y \mathrm{~d} V$ as a triple iterated integral in rectangular coordinates. Do not evaluate.
4. [3pts] Find the volume of the region D bounded above by the sphere $x^{2}+y^{2}+z^{2}=2$ and below by the paraboloid $z=x^{2}+y^{2}$.

