You have 20 minutes to complete this quiz. No calculator, cheat sheet or aid of any kind is allowed.

1. [5pts] Consider the vector-valued function

$$
\mathbf{r}(t)=4 \sin t \mathbf{i}-3 \sin t \mathbf{j}+5 \cos t \mathbf{k}
$$

coresponding to circle in a plane. Compute the quantity

$$
\left(\mathbf{r} \times \mathbf{r}^{\prime}\right)(t)
$$

How does this value relate to the plane containing the circle parameterized by $\mathbf{r}(t)$?
Solution. We first find that

$$
\mathbf{r}^{\prime}(t)=4 \cos t \mathbf{i}-3 \cos t \mathbf{j}-5 \sin t \mathbf{k}
$$

Taking the cross product, we arive at

$$
\begin{aligned}
\mathbf{r}(t) \times \mathbf{r}^{\prime}(t) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
4 \sin t & -3 \sin t & 5 \cos t \\
4 \cos t & -3 \cos t & -5 \sin t
\end{array}\right| \\
& =15\left(\sin ^{2} t+\cos ^{2} t\right) \mathbf{i}+20\left(\sin ^{2} t+\cos ^{2} t\right) \mathbf{j}-12(\sin t \cos t-\sin t \cos t) \mathbf{k} \\
& =15 \mathbf{i}+20 \mathbf{j}
\end{aligned}
$$

This value is the normal to the plane that the circular motion lies in.
2. [5pts] Let $\mathbf{r}(t)$ be the position of a particle with mass m and let $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ be it's velocity. Suppose that the particle is subject to a force $\mathbf{F}(t)$. Define the angular momentum $\mathbf{L}(t)$ and torque $\mathbf{T}(t)$ on the particle by

$$
\mathbf{L}(t)=(\mathbf{r} \times m \mathbf{v})(t), \quad \mathbf{T}(t)=(\mathbf{r} \times \mathbf{F})(t)
$$

Using Newton's law

$$
m \mathbf{v}^{\prime}(t)=\mathbf{F}(t)
$$

derive the following angular version of Newton's law

$$
\mathbf{L}^{\prime}(t)=\mathbf{T}(t)
$$

(Hint: take the derivative of $\mathbf{L}(t)$).
Solution. Taking the derivative of $\mathbf{L}(t)$ we obtain

$$
\begin{aligned}
\mathbf{L}^{\prime}(t) & =\mathbf{r}^{\prime}(t) \times m \mathbf{v}(t)+\mathbf{r}(t) \times m \mathbf{v}^{\prime}(t) \\
& =\underbrace{\mathbf{v}(t) \times m \mathbf{v}(t)}_{=0}+\mathbf{r}(t) \times \mathbf{F}(t) \\
& =\mathbf{T}(t)
\end{aligned}
$$

