You have 15 minutes to complete this quiz. No calculator, cheat sheet or aid of any kind is allowed.
1.[5pts] Find the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the hyperbolic paraboloid

$$
z=x^{2}-3 y^{2}
$$

so that the tangent plane at P_{0} is parallel to the plane $8 x+3 y-z=4$.
Solution. The hyperbolic paraboloid is given by

$$
z-x^{2}+3 y^{2}=0
$$

The normal is given by the gradient

$$
\mathbf{N}=\nabla\left(z-x^{2}+3 y^{2}\right)=-2 x \mathbf{i}+6 y \mathbf{j}+\mathbf{k} .
$$

Additionally, the normal to the plane $8 x+3 y-z=4$ is

$$
\mathbf{N}_{1}=8 \mathbf{i}+3 \mathbf{j}-\mathbf{k}
$$

The planes are paralell if there is a c such that,

$$
\mathbf{N}=c \mathbf{N}_{1} .
$$

This implies that

$$
-2 x=8 c, \quad 6 y=3 c, \quad 1=-c .
$$

Solving this gives $c=-1$ and

$$
x=4, \quad y=-\frac{1}{2} .
$$

Substituting this into the expression for the hyperbolic paraboloid gives z

$$
z=4^{2}+\frac{3}{4}=\frac{67}{4} .
$$

Therefore the point is $P=(4,-1 / 2,67 / 4)$.
2. [5pts] Suppose that the pressure in the atmosphere is given by

$$
P(x, y, z)=e^{-z}(\sin 2 x+\cos y),
$$

and you are located at the point $(-\pi, 2 \pi, 0)$ in space. In which direction \mathbf{u} (a unit vector) should you move to experience the greatest decrease in pressure?

Solution: At any point (x, y, z) the greatest decrease in the function P is determined by the negative gradient.

$$
-\nabla P(x, y, z)=-e-z 2 \cos 2 x \mathbf{i}+e^{-z} \sin y \mathbf{j}+e^{-z}(\sin 2 x+\cos y) \mathbf{k}
$$

at $(-\pi, 2 \pi, 3)$ this becomes,

$$
\nabla P(x, y, z)=-2 \mathbf{i}+\mathbf{k}
$$

To make this a unit vector we find

$$
\mathbf{u}=\frac{-2}{\sqrt{5}} \mathbf{i}+\frac{1}{\sqrt{5}} \mathbf{k}
$$

